
A Unified Approach for Approximating 2-Edge-Connected

Spanning Subgraph and 2-Vertex-Connected Spanning Subgraph

Ali Çivril*

September 26, 2024

Abstract

We provide algorithms for the minimum 2-edge-connected spanning subgraph problem and
the minimum 2-vertex-connected spanning subgraph problem with approximation ratio 4

3 .

1 Introduction

We consider two fundamental connectivity problems, namely the minimum 2-edge-connected span-
ning subgraph problem (2-ECSS) and the minimum 2-vertex-connected spanning subgraph problem
(2-VCSS).

In 2-ECSS, given an undirected simple graph G = (V,E), one finds a 2-edge-connected spanning
subgraph (2-ECSS) of G with minimum number of edges. The problem remains NP-hard and MAX
SNP-hard even for subcubic graphs [6]. The first result improving the approximation factor 2 came
from Khuller and Vishkin [14], which is a 3

2 -approximation algorithm. Cheriyan, Sebö and Szigeti
[2] improved the factor to 17

12 . Vempala and Vetta [18], and Jothi, Raghavachari and Varadarajan
[13] claimed to have 4

3 and 5
4 approximations, respectively. Krysta and Kumar [15] went on to

give a (43 − ϵ)-approximation for some small ϵ > 0 assuming the result of Vempala and Vetta [18].
A relatively recent paper by Sebö and Vygen [17] provides a 4

3 -approximation algorithm by using
ear decompositions, and mentions that the aforementioned claimed approximation ratio 5

4 has not
appeared with a complete proof in a fully refereed publication. The result of Vempala and Vetta
[18], which was initially incomplete, recently re-appeared in [12]. Given this, it is not clear if the
ratio (43 − ϵ) by Krysta and Kumar [15] still holds. Very recently, Garg, Grandoni, and Ameli [8]
improved upon the ratio 4

3 by a constant 1
130 > ϵ > 1

140 , which stands as the best current result for
approximating the problem.

In 2-VCSS, given an undirected simple graph G = (V,E), one finds a 2-vertex-connected (or
simply 2-connected) spanning subgraph (2-VCSS) of G with minimum number of edges. This
problem is NP-hard via a reduction from the Hamiltonian cycle problem. Furthermore, by the
result of Czumaj and Lingas [7], it does not admit a PTAS unless P = NP. The first result
improving the factor 2 for 2-VCSS came from Khuller and Vishkin [14], which is a 5

3 -approximation
algorithm. Garg, Vempala, and Singla [9] improved the approximation ratio to 3

2 . Cheriyan and
Thurimella [3] also provides the same approximation ratio in a more general context, where they
consider k-connectivity. Vempala and Vetta [18] claimed the ratio 4

3 , which is shown to be not
valid by Heeger and Vygen [11]. Jothi, Raghavachari and Varadarajan [13] claimed the ratio 5

4 .

*Istanbul Atlas University, Computer Engineering Department, Kagithane, 34408 Istanbul, Turkey, e-mail:
ali.civril@atlas.edu.tr

1

However, this claim has been later withdrawn (see [10]). Gubbala and Raghavachari [10] claimed
to have a 9

7 -approximation algorithm. The only complete (and exceedingly long) proof of this claim
is in Gubbala’s thesis [16], which has not appeared anywhere else. To the best of our knowledge,
the algorithm by Heeger and Vygen [11] with factor 10

7 stands as the first refereed improvement
over the factor 3

2 after a long hiatus. This paper also contains a somewhat more detailed discussion
about the aforementioned claimed results, implying that theirs is the first improvement. Very
recently, Bosch-Calvo, Grandoni, and Ameli provided an algorithm with approximation ratio 4

3 [1],
the current best factor.

Although the two problems we consider are closely related to each other, as noted above, the
work on these problems have generally appeared in distinct publications. The reason is that the
solution being 2-edge-connected or 2-connected enforces different approaches if the algorithmic ideas
are tightly coupled with the structure of the solution. We give a unified strategy to solve these
problems, where we use an algorithmic idea almost oblivious to whether the solution should be 2-
edge-connected or 2-connected. The starting point is [5] in which we gave an algorithm for 2-ECSS.
Unfortunately, its analysis therein is not clear, and contains several inconsistencies, even with the
corrigendum published after the paper [4]. The purpose of this paper is twofold: We provide a new
algorithm for 2-ECSS, which starts from the ideas employed in [5], but with a clear analysis, thereby
obtaining the ratio 4

3 . Secondly, we show that the same algorithmic idea can be applied to 2-VCSS
to attain the same approximation ratio 4

3 , matching the current best approximation ratio. Both
the algorithms and their analyses are considerably simpler compared to previous approaches. In
essence, we do not use anything but a recursive local search over an inclusion-wise minimal starting
solution.

2 Preliminary Definitions

For both of the problems, we will use the lower bound derived from the dual of the natural LP
relaxation for 2-ECSS. Here, δ(S) denotes the set of edges with one end in the cut S and the other
not in S.

minimize
∑
e∈E

xe (EC)

subject to
∑

e∈δ(S)

xe ≥ 2, ∀ ∅ ⊂ S ⊂ V,

1 ≥ xe ≥ 0, ∀ e ∈ E.

The following is the dual of (EC).

maximize
∑

∅⊂S⊂V

2yS −
∑
e∈E

ze (EC-D)

subject to
∑

S:e∈δ(S)

yS ≤ 1 + ze, ∀e ∈ E,

yS ≥ 0, ∀ ∅ ⊂ S ⊂ V,

ze ≥ 0, ∀ e ∈ E.

We assume that the input graph G is 2-connected. Otherwise, the algorithm of the next section
can be executed on blocks (maximal 2-connected subgraphs) of G separately. This is without loss

2

of generality, since in that case the value of an optimal solution for 2-ECSS is the sum of those of
blocks, and we can argue the approximation ratio only within a block. Given a vertex v ∈ V and a
feasible solution F , if the degree of v in the graph (V, F) is at least 3, it is called a high-degree vertex
on F . For a path P = v1v2 . . . vk−1vk, v1 and vk are the end vertices of P , and all the other vertices
are the internal vertices of P . A path whose internal vertices have degree 2 in the graph (V, F) is
called a plain path on F . A maximal plain path is called a segment. The length of a segment is
the number of edges on the segment. If the length of a segment is ℓ, it is called an ℓ-segment. A
1-segment is also called a trivial segment. If a 2-ECSS remains feasible upon removal of an edge,
the edge is called redundant. An ℓ-segment with ℓ ≥ 2 is called a short segment if ℓ ≤ 3, otherwise
a long segment. Given a 2-VCSS F , if the removal of a segment from F violates 2-connectivity, it
is called a weak segment on F , otherwise a strong segment on F . If the end vertices of a segment
(on a 2-ECSS) are identical, it is called a closed segment.

3 The Algorithm for 2-ECSS and 2-VCSS

The algorithm starts by considering an inclusion-wise minimal 2-VCSS on G (Recall that we assume
G is 2-connected). Let F be such a solution. Given an internal vertex u of a strong short segment
S on F , let NE(u) denote the set of edges incident to u in E. The algorithm modifies F via what
we call improvement processes. An improvement process first tries to replace F by (F \ B) ∪ A
while maintaining feasibility, where A ⊆ E \ F (the replacing edge set) is a set of k edges called a
critical edge set, and B ⊂ F (the replaced edge set) is a set of k + 1 edges, 1 ≤ k ≤ 2. Specifically,
we seek such A to be a subset of NE\F (u) for an internal vertex u of some strong short segment S
on F . If there is such A, the described operation is called an improvement operation. Examples of
improvement operations are given in Figure 1 and Figure 2.

If there is no improvement operation that can be performed on u, fix a critical edge set A, and
let AF be the set of strong short segments on F ∪ A that do not exist on F . Let v be an internal
vertex of some segment S ∈ AF . The algorithm calls the procedure described above on v recursively
provided that no improvement process has been previously called on v. These calls are performed
for all A on u and for each internal vertex u ∈ S. If there is an improvement operation in one
of these calls, the called function returns and the caller performs a specific deletion operation as
follows. It attempts to delete the edges from F ∪A in the order F , A, where the order within the
sets F and A are immaterial. Specifically, it deletes an edge as long as the residual graph remains
a 2-VCSS. This enforces to keep the edges in A in the solution. Examples of these operations are

Algorithm 1: 2-ECSS-2-VCSS(G(V,E))

// Initialization
Let F be an inclusion-wise minimal 2-VCSS of G

// Improvement processes
while there is a strong short segment S on F and an internal vertex u of S on which an
improvement process has not been called do

Improvement-Process(F, S, u)

// Clean-up for 2-ECSS
if computing a 2-ECSS then

Delete redundant edges from F to obtain F

return (F, F)

3

Algorithm 2: Improvement-Process(F, S, u)

if there is an improvement operation that can be performed on u then
Apply an improvement operation on u
return

for each critical edge set A incident to u do
Let AF be the set of strong short segments on F ∪A that do not exist on F
for each segment T in AF and each internal vertex v of T do

if no improvement process has been called on (T, v) then
Improvement-Process(F ∪A, T, v)
if there is an improvement operation performed in
Improvement-Process(F ∪A, T, v) then

Perform deletion operation on F ∪A in the order F , A
return

if there is no improvement operation performed in any of the calls above then
Restore F to the original set considered before the function call

Figure 1: An example of an improvement operation, where the critical edge set is shown via
dotted lines on the left-hand side

Figure 2: An example of an improvement operation, where the critical edge set is shown via
dotted lines on the left-hand side

given in Figure 3 and Figure 4, where the depth of the recursion tree is 2. After the reverse-delete
operation, the current function call returns. If no improvement operation is performed in any of
the calls, the solution F is restored to the original one before the function call on u. The iterations
continue until there is no strong short segment S and u on which we can perform an improvement
process.

This completes the definition of the algorithm for 2-VCSS. For 2-ECSS, one final step is per-
formed, which excludes all the redundant edges, i.e., the trivial segments whose removal does not
violate 2-edge-connectivity. The result of this operation is F .

Proposition 1. Algorithm 1 can be implemented in polynomial-time.

4

u v u v

Figure 3: An example of an improvement process of recursion depth 2, where the edges in the
sets A considered by the algorithm is shown via dotted lines on the left-hand side

u

v
u

v

Figure 4: An example of an improvement process of recursion depth 2, where the edges in the
sets A considered by the algorithm is shown via dotted lines on the left-hand side

Proof. It suffices to see that the main loop of Improvement-Process terminates in polynomial
number of operations. Note first that there are polynomially many sets A considered for a single
vertex u, since |A| is constant. Starting from an internal vertex u of a strong short segment S,
consider the recursion tree in which each node represents a recursive function call. By definition,
each node of this tree is associated to an internal vertex of a strong short segment. A vertex can be
an internal vertex of a constant number of strong short segments. Since an improvement process
is called at most once on a strong short segment-internal vertex pair, this implies that the number
of nodes in the tree is polynomially bounded. So the algorithm terminates in polynomial number
of operations.

4 Proof of the Approximation Factor 4/3 for 2-ECSS and 2-VCSS

Let (F, F) be a solution returned by Algorithm 1, and opt(G) denote the value of an optimal
2-ECSS on G.

Lemma 2. A short segment S on F is not a closed segment.

Proof. Recall that the input graph is assumed to be 2-connected. This implies that if S is a closed
segment with an internal vertex u and the end vertex v, then there exists w ∈ V with (u,w) ∈ E\F .
In this case however, the algorithm includes such an edge into the solution instead of (u, v), which
is a contradiction.

Lemma 3. There exists a graph G1 (depending on G), a 2-VCSS F1 ⊆ E(G1), and a 2-ECSS
F2 ⊆ E(G1) such that the following hold.

1. F1 is minimal with respect to inclusion.

5

2. F2 is obtained from F1 by deleting redundant edges.

3. For any internal vertex s of a strong short segment S on F1, there is no edge e ∈ E(G1) \ F1

incident to s.

4. |F1|
opt(G1)

≤ 4
3 ⇒ |F |

opt(G) ≤
4
3 .

|F2|
opt(G1)

≤ 4
3 ⇒ |F |

opt(G) ≤
4
3 .

Proof. We reduce G to G1 and F to F1 by performing a series of operations. Let S be a strong
short segment on F , and s be an internal vertex of S. Let O be an optimal 2-ECSS on G. Clearly,
O contains two edges incident to s, say e1 and e2. Assume it contains a third edge e3 incident to
s. Let the other end vertices of these edges be w1, w2, and w3, respectively. By the improvement
operations performed by the algorithm, none of these vertices is an internal vertex of a strong short
segment. If O contains all the edges incident to wi that are in F , we call wi a special vertex, for
i = 1, 2, 3.

Claim 4. There is at most one special vertex in the set {w1, w2, w3}.

Proof. Assume without loss of generality that w1 and w2 are special vertices. Then by the structure
of a 2-ECSS, we can discard e1 or e2 from O without violating feasibility, which contradicts its
optimality.

Claim 5. There exists an optimal 2-ECSS O′ on G such that O′ contains 2 edges incident to s.

Proof. By Claim 4, there are at least two vertices in the set {w1, w2, w3} that are not special. Let
two of them be without loss of generality w2 and w3. By the structure of a 2-ECSS, one of these
vertices, say w2, satisfies the following. There is a neighbor w′

2 of w2 such that f = (w2, w
′
2) ∈ F \O,

and O′ = O ∪ {f} \ {e2} is another optimal solution. In this case the degree of s on O′ is 2, which
completes the proof.

Let O′(S) be the set of edges in this solution incident to the internal vertices of S, and let
F ′ = F ∪O′(S) \ P be a minimal 2-VCSS on G, where P ⊆ F \O′(S). Examples of this operation
are illustrated in Figure 5 and Figure 6. Let E(S) denote the set of edges incident to the internal
vertices of S in E(G) \ O′(S). Note that this set contains P . Delete the edges in E(S) from G to
obtain G′. Switch to an optimal solution on G′ implied by Claim 5. We call the new strong short
segments that appear on F ′ the emerging segments. Apply all these operations recursively on the
emerging segments. Note that since none of the aforementioned vertices w1, w2, and w3 can be an
internal vertex of a strong short segment as noted, the switch from O to O′ cannot be reversed.
After the recursion starting from S terminates, continue performing the described operations on
the strong short segments on the residual solution and the graph. Let the results be F1 and G1.
Given these, the first claim of the lemma follows from Claim 5. The third claim of the lemma holds,
since there is no edge in E(G1)\F1 incident to the internal vertices of a strong short segment on F1

by construction. Let F2 be a 2-ECSS obtained by deleting redundant edges from F1, thus satisfying
the second claim of the lemma. We now show that the fourth claim holds.

Claim 6. |F1| ≥ |F |. |F2| ≥ |F |.

Proof. Let S be a strong short segment on which we start the recursive operations above or an
emerging segment. For |F1| ≥ |F |, it suffices to see that |P | ≤ |O′(S)| in the construction described
above. Note that by the algorithm and the construction of F1, there is no improvement process
performed on S that has improved the cost of the solution. Given this, |P | > |O′(S)| derives a
contradiction. In particular, we cannot have the configurations on the left hand sides of Figure 1-
Figure 4. Note next that if e is an edge deleted from F1 to obtain F2, then we also have that

6

Figure 5: A transition from F to F1 with |P | = 1, where the edges in O′(S) are shown via dotted
lines on the left-hand side, and the edges in P are shown via dotted lines on the right-hand side

Figure 6: A transition from F to F1 with |P | = 4, where the edges in O′(S) are shown via dotted
lines on the left-hand side, and the edges in P are shown via dotted lines on the right-hand side

e belongs to the set of redundant edges deleted to obtain the 2-ECSS F by the algorithm in the
last step. Given this, the first assertion that |F1| ≥ |F | implies |F2| ≥ |F |. This completes the
proof.

We next note that opt(G1) ≤ opt(G). This follows from our construction ensuring that there is
an optimal solution O such that for any strong short segment S on F1, E(S) does not contain any

edge from O. Combining this with Claim 6, we obtain |F |
opt(G) ≤

|F1|
opt(G1)

and |F |
opt(G) ≤

|F2|
opt(G1)

, which
establishes the fourth claim of the lemma and completes the proof.

Let G1, F1, and F2 be as implied by Lemma 3.

Lemma 7. |F1|
opt(G1)

≤ 4
3 .

|F2|
opt(G1)

≤ 4
3 .

Proof. We first construct a feasible dual solution in (EC-D) with total value at least 3
4 |F2|, and

later establish a construction with value at least 3
4 |F1|, considering the cases specific to a 2-VCSS.

Given a strong short segment S on F1 and an internal vertex s of S, assign y{s} = 3/4. If the
segment is a 3-segment, let ze = 1/2 for the middle edge e of the segment to maintain feasibility.
Let y{w} = 1/2 for the internal vertices w of strong long segments and weak segments on F1. Note
that the overall assignment is feasible by the third claim of Lemma 3.

We distinguish a dual value we assign and its contribution in the objective function of (EC-
D), which is twice the dual value. The latter is called the dual contribution, and the associated
dual is said to contribute a certain value. We use a cost sharing argument, so that the cost of a
set of segments is countered with a unique set of dual contributions with ratio at least 3

4 , which
establishes the main result. To this aim, we impose that the strong short segments are paid by the
dual contributions defined on their internal vertices and edges. This is with ratio at least 3

4 , since
for a 2-segment the total dual contribution is 3

2 , and for a 3-segment the total dual contribution is
3
2 +

3
2 −

1
2 = 5

2 . The cost of the strong long segments are paid by the dual contributions defined on

7

(a) (b) (c) (d)

Figure 7

their internal vertices, which is with ratio at least 3
4 , since the cost of a long segment is at least 4.

The cost of a weak segment is countered with the dual contributions of its internal vertices and a
new set of contributions y we will later define. Thus for a weak ℓ-segment, the total contribution
is ℓ − 1 + y. We impose that ℓ − 1 of this optimally pays for the ℓ − 1 edges of the segment, and
show y ≥ 3/4. Let k be the number of weak segments on F1, excluding the trivial segments defined
by the redundant edges. We construct a total value of at least 3k

4 , where k is the total number of
weak segments.

We argue by induction on k. We first consider the base case k = 1, where the weak segment is
not a trivial segment. This is depicted in Figure 7a. Let u be an end vertex of this weak segment.
If u is not shared by any strong short segment, define y{u} = 1/2, which optimally covers the weak
segment. Otherwise, there exists a high-degree vertex v such that u and v are the end vertices of a
strong short segment. In this case define y{u} = 1/4 and yS = 1/4, where S is the set of vertices of
strong short segments with an end vertex u, but excluding the vertex v. Note that this is feasible
by the third claim of Lemma 3. These duals are shown as dotted ovals in the figure. The total
value contributed by these duals is again 1, which optimally covers e. The inductive step might
introduce one or two new weak segments as depicted in Figure 7b and Figure 7c. The analysis of
the configuration in Figure 7b is identical to that of the base case. Figure 7c additionally contains
a vertex incident to only weak segments on which we define a dual of value 1/2, so that the two
new weak segments are optimally covered.

We now consider the base case k = 2 in which the two weak segments do not share a common
end vertex. This is depicted in Figure 8a. In this case assign y{v} = 1/4 for each end vertex v
of a weak segment, so that the total dual contribution defined for the weak segments is 2, which
satisfies the result. In the inductive step one may introduce one, two, three, or four new weak
segments by extending the graph in the induction hypothesis. These are given Figure 8, Figure 9,
and Figure 7d, where we depict the extending subgraphs in their simplest form. In what follows, we
tacitly assume the third claim of Lemma 3, which forbid the existence of edges that would violate
the feasibility of the dual solution.

In Figure 8b and Figure 8c one new weak segment is introduced. Let u be a newly introduced
high-degree vertex. If there is no strong short segment with an end vertex u, we define y{u} = 1/2.
Otherwise, we define y{u} = 1/4 and yS = 1/4, where S is the set of vertices of strong short
segments with an end vertex u. This is feasible by the third claim of Lemma 3, a fact that will also
be used in the following cases. The duals are shown in the figures with dotted ovals. Note that
the closed segment in Figure 8b cannot be a short segment by Lemma 2. In either case the dual
contribution is 1, which optimally covers the new weak segment.

In Figure 8d two new weak segments are introduced. Let u and v be two newly introduced
high-degree vertices, which are also the end vertices of the weak segments. If u and v are the end
vertices of strong short segments, assign y{u} = y{v} = 1/4, and yS = 1/4, where S is the set of

8

(a) (b) (c) (d)

Figure 8

(a) (b) (c) (d)

Figure 9

vertices of strong short segments with an end vertex u. Otherwise, let y{u} = 1/2. The total dual
contribution by u and v together with yS is at least 3/2 in both cases, covering the two new weak
segments with ratio at least 3

4 . We do not depict the generalization of Figure 8d, analogous to the
one from Figure 8b to Figure 8c, which does not change the analysis.

The argument for the configuration in Figure 9a is identical to that of Figure 8d. In Figure 9b,
Figure 9c, and Figure 7d (where one of the newly introduced weak segments is not a trivial segment)
three new weak segments are introduced. If an end vertex is only incident to weak segments, it
is assigned the dual value 1/2 and hence contributes 1 (See the vertex depicted as a black dot in
the figures). Otherwise, we define dual values around it as described for Figure 8b, which again
contributes 1. This is depicted in Figure 9c. In both cases the other vertices contribute 3/2, as
described for Figure 8d, thus summing up to at least 5/2. This covers the three newly introduced
weak segments with ratio at least 5

6 . Figure 9d is a straightforward generalization of Figure 9b.
The total new dual contribution is thus at least 7

2 , which covers the four new weak segments with
ratio at least 7

8 . We do not depict the generalizations of Figure 9d, analogous to the one from
Figure 9b to Figure 9c, which does not change the analysis. This completes the induction.

We now establish |F1|
opt(G1)

≤ 4
3 . By definition, both the base case and the inductive step for

a 2-ECSS are subsets of those for a 2-VCSS except the one depicted in Figure 8b. The set of
configurations specific to a 2-VCSS are those depicted in Figure 7a, Figure 7b, and Figure 7c,
where the weak segments are trivial segments. We have already analyzed these cases, and thus the
proof is completed.

Theorem 8. |F | ≤ 4
3opt(G). |F | ≤ 4

3opt(G).

Proof. Follows from Lemma 7 and the fourth claim of Lemma 3.

9

(a) (b) (c)

Figure 10: A tight example for the algorithm: (a) Input graph; (b) A solution returned by the
algorithm; (c) An optimal solution.

5 A Tight Example

A tight example for the algorithm is given in Figure 10. The solution returned by the algorithm
has cost 4k. The optimal solution has cost 3k + 2.

Acknowledgment

We would like to thank Berkay Tahsin Tunca for helping us by drawing the figures. This work
was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the
Grant Number 123E530. The author thanks TUBITAK for their supports.

References

[1] M. Bosch-Calvo, F. Grandoni, and A. J. Ameli. A 4/3 approximation for 2-vertex-connectivity.
In 50th International Colloquium on Automata, Languages, and Programming, ICALP, pages
29:1–29:13, 2023.

[2] J. Cheriyan, A. Sebö, and Z. Szigeti. Improving on the 1.5-approximation of a smallest 2-edge
connected spanning subgraph. SIAM J. Discrete Math., 14(2):170–180, 2001.

[3] J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning subgraphs
via matching. SIAM J. Comput., 30(2):528–560, 2000.

[4] A. Çivril. Corrigendum to “A new approximation algorithm for the minimum 2-edge-connected
spanning subgraph problem” [Theor. comput. sci. 943 (2023) 121-130]. Theor. Comput. Sci.,
963:113926, 2023.

[5] A. Çivril. A new approximation algorithm for the minimum 2-edge-connected spanning sub-
graph problem. Theor. Comput. Sci., 943:121–130, 2023.

[6] B. Csaba, M. Karpinski, and P. Krysta. Approximability of dense and sparse instances of
minimum 2-connectivity, TSP and path problems. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 74–83, 2002.

10

[7] A. Czumaj and A. Lingas. On approximability of the minimum-cost k -connected spanning
subgraph problem. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 281–290, 1999.

[8] M. Garg, F. Grandoni, and A. J. Ameli. Improved approximation for two-edge-connectivity.
In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
2368–2410, 2023.

[9] N. Garg, S. Vempala, and A. Singla. Improved approximation algorithms for biconnected
subgraphs via better lower bounding techniques. In Proceedings of the Fourth Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms (SODA), pages 103–111, 1993.

[10] P. Gubbala and B. Raghavachari. Approximation algorithms for the minimum cardinality
two-connected spanning subgraph problem. In Integer Programming and Combinatorial Opti-
mization, 11th International IPCO Conference, pages 422–436, 2005.

[11] K. Heeger and J. Vygen. Two-connected spanning subgraphs with at most 10
7 OPT edges.

SIAM J. Discrete Math., 31(3):1820–1835, 2017.

[12] C. Hunkenschröder, S. Vempala, and A. Vetta. A 4/3-approximation algorithm for the mini-
mum 2-edge connected subgraph problem. ACM Trans. Algorithms, 15(4):55:1–55:28, 2019.

[13] R. Jothi, B. Raghavachari, and S. Varadarajan. A 5/4-approximation algorithm for mini-
mum 2-edge-connectivity. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 725–734, 2003.

[14] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2):214–235, 1994.

[15] P. Krysta and V. S. A. Kumar. Approximation algorithms for minimum size 2-connectivity
problems. In 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 431–442, 2001.

[16] P.Gubbala. Problems in Graph Connectivity. PhD thesis, Department of Computer Science,
University of Texas at Dallas, Richardson, TX, 2006.

[17] A. Sebö and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2
for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica, 34(5):597–629,
2014.

[18] S. Vempala and A. Vetta. Factor 4/3 approximations for minimum 2-connected subgraphs.
In Approximation Algorithms for Combinatorial Optimization, Third International Workshop
(APPROX), pages 262–273, 2000.

11

