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Abstract

We address two problems related to selecting an optimal subset of columns from a matrix. In one of these

problems, we are given a matrix A ∈ Rm×n and a positive integer k, and we want to select a sub-matrix

C of k columns to minimize ‖A−ΠCA‖F , where ΠC = CC+ denotes the matrix of projection onto the

space spanned by C. In the other problem, we are given A ∈ Rm×n, positive integers c and r, and we

want to select sub-matrices C and R of c columns and r rows of A, respectively to minimize ‖A− CUR‖F ,

where U ∈ Rc×r is the pseudo-inverse of the intersection between C and R. Although there is a plethora

of algorithmic results, the complexity of these problems have not been investigated thus far. We show that

CSSP-F and CRSSP-F are NP-hard assuming UGC.
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1. Introduction

Given a matrix A ∈ Rm×n as a set of column/row vectors, we are interested in the problem of obtaining

a subset which stands as a good representative of A. The criteria that assess the quality of a subset are

generally expressed via unitarily invariant norms of certain matrices related to the chosen subset. In what

follows, we state a measure of quality for one of the problems we will consider, namely CSSP. We then

continue to state both of the problems.

For the purposes of good reconstruction of a matrix A, in a geometric sense, one may want to select a

subset of columns of this matrix so that they are as close as possible to the whole matrix. To formalize this,

suppose we are given a column vector u which is not in the selected sub-matrix C. It is well known that the

distance of u to the space spanned by a set C of column vectors is ‖u−CC+u‖2 as the projection of u onto

C is exactly CC+u where C+ is the pseudo-inverse of C. Thus, we can measure the quality of the chosen

columns by ‖A− CC+A‖F , which measures the sum of squared distances of all columns of A to the subspace

spanned by C. Here, smaller value means a better subset. The importance of selecting such a subset has

both theoretical and empirical interest. A good subset can be used to prevent from redundancy. Indeed,

subset selection in matrices have been one of the main ingredients in statistical data analysis (e.g. [42]). The
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problem of selecting a good subset also occurs in various applications such as low-rank approximations to

matrices [6, 7], sparse solutions to least-squares regression [11], rank deficient least-squares problems [25, 37]

and sensor selection in a wireless network [38].

The subject matter of this paper is the following two problems:

Problem: Column Subset Selection Problem in Frobenius Norm (CSSP-F)

Instance: A real matrix A ∈ Rm×n, and k ∈ Z+.

Output: A sub-matrix C ∈ Rm×k of A such that ‖A− CC+A‖F is minimum.

Problem: Column-Row Subset Selection Problem in Frobenius Norm (CRSSP-F)

Instance: A real matrix A ∈ Rm×n, and c, r ∈ Z+.

Output: Sub-matrices C ∈ Rm×c and R ∈ Rr×n of A such that ‖A− CUR‖F is minimum, where U is the

pseudo-inverse of the intersection between C and R.

These problems have received much attention in the past two decades and there is a large body of

algorithmic results. This paper provides the first complexity theoretic results regarding these problems. We

show that

Theorem 1.1. CSSP-F and CRSSP-F do not have PTAS assuming the Unique Games Conjecture.

Note that CSSP-F is in fact a special case of CRSSP-F, where one chooses k = c, r = m and hence

R = A. The hardness of CRSSP-F will naturally follow from the hardness of CSSP-F upon choosing

the parameters accordingly. Before proceeding further, we would like to elaborate on why Unique Games

Conjecture might be necessary to establish NP-hardness of these problems. As stated in the example above,

a related but rather easy to analyze measure of quality for a subset is the volume of the parallelepiped they

define. The problem stated via this measure is already known to be NP-hard and inapproximable unless

P = NP [15, 16, 41]. NP-hardness of this problem is easily established by a reduction from the Exact

Cover by 3-sets Problem (X3C) [16] or from the Set Packing Problem [41]. In either case, one constructs

a column vector of dimension n for each set in the set system, where n is the total number of elements in

the ground set. One then assigns 1 to the coordinate corresponding to an element contained in the set and

0 otherwise. The volume turns out to be large if there exists a cover, and small in case there is no good

covering. Unfortunately, the same strategy cannot be applied to the problems we consider in this paper.

Because, they essentially ask to minimize a measure in which we take the whole matrix into account. More

precisely, we need to know how far away the whole matrix is from the selected sub-matrix. X3C and Set

Packing do not yield any information about how the constructed matrix is conditioned with respect to the

selected sub-matrix, but they only provide a means to assess the quality of the selected sub-matrix alone. In

other words, for CSSP-F and CRSSP-F one needs to be able to control the “global” information whereas

local information is enough for the NP-hardness of the other aforementioned problems.
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We give explicit examples in order to show why simple NP-completeness reductions do not work. In order

to prove that CSSP-F is NP-hard, one needs to find a reduction from, say X3C to CSSP-F such that if

there is an exact cover then there is a set of k column vector subset C of A such that ‖A− CC+A‖F ≤M ,

and if there is no exact cover then for all k column vector subsets we have ‖A− CC+A‖F > M . Note

that the reduction should explicitly define k. Consider the following X3C instance where the ground set is

E = {e1, e2, e3, e4, e5, e6} and the 3-element subsets are Si = {e1, e2, e3} for 1 ≤ i ≤ n, Si = {e4, e5, e6} for

n + 1 ≤ i ≤ 2n, Si = {e1, e2, e4} for 2n + 1 ≤ i ≤ 3n, for some number n. Consider the obvious reduction

which creates a 6×3n matrix and assigning a 1 to a coordinate of the 6-dimensional column vector whenever

the corresponding set contains the element representing that coordinate, and which further selects k = 2.

Clearly there exists an exact cover for the instance we have defined. However, for n approaching infinity,

the total distance of the matrix A to any selected subset is unbounded, i.e. ‖A− CC+A‖F is unbounded.

Hence, one cannot even bound the desired value from above if such a naive reduction is assumed. It is not

difficult to construct an X3C instance which does not have an exact cover, but the corresponding CSSP-F

instance has bounded value. A similar reduction was offered by one of the referees. We briefly talk about

it to show that it does not work for the same reason: One cannot control the global information of the

problem. The suggested reduction is from the Edge Dominating Set Problem. It asks whether a graph

has an edge dominating of size at most k, a subset of edges that covers all the edges in the graph with

respect to adjacency. Suppose there are m vertices and n edges in the graph. Then, the reduction creates

an m× n matrix (n column vectors of size m) by assigning 1 to a coordinate of the column vector whenever

the corresponding edge is adjacent to the vertex representing that coordinate. It is not difficult see that,

in this case too, the value ‖A− CC+A‖F may be unbounded even if there is an edge dominating set of

size 1: consider the star graph with arbitrarily large number of vertices. There are also NO instances of

this problem which translates into a small ‖A− CC+A‖F under the reduction. Consider a 4-vertex graph:

a, b, c, d and the edge set {a, b}, {c, d}. There is no edge dominating set of size 1 for this instance. However,

for the resulting matrix, ‖A− CC+A‖F is smaller than that of the YES case for large enough n, no matter

what k is.

So, one apparently needs to make further assumptions to arrive at any complexity theoretic result for

these problems. We extend the work in [15] and show that if Unique Games Conjecture (UGC) is assumed,

we can construct a matrix with extra useful structure so that we can quantify the distance of the columns

of the whole matrix to the selected sub-matrix. This is possible due to the regular structure of the Label

Cover problem. Indeed, by replacing each vertex of the Label Cover problem with a set of column vectors,

i.e. by defining a column vector for each label positioned in a suitable manner, we fix their total number. We

further control the quantity ‖A− CC+A‖F by assuming UGC. If UGC is not assumed, then based on the

projection function, there might be several labels on the right hand side which is compatible with a single

label on the left hand side. But, this creates the same problems we have mentioned above and prevents us

from controlling the sum of distances. UGC helps us to guarantee that the label sizes are equal on both
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sides and no matter how one selects a sub-matrix of size k, the number of vectors that are not included in

that sub-matrix and furthermore their total distances to the selected subspace is under control and can be

analyzed.

2. Related Work

There are various methods to construct concise representations of a matrix including random projections

(e.g. [48]) and element-wise sparsification (e.g. [1]). In this section, we only list algorithmic results which

construct matrix factorizations via selecting a subset of columns/rows of a matrix, as subset selection is the

main focus of the paper. Note that, not all of the results below are directly related to the exact expressions

in our problem statements, but they often come in different forms. Particularly, the quality of the solution

is frequently compared to the best subspace revealed by the truncated SVD of the matrix (e.g. ‖A−Ak‖η),

rather than the best choice of columns/rows. However, the complexity of the problems as we stated have

already been posed as open problems in some of the work.

The theoretical computer science community has investigated the Column Subset Selection Problem

(CSSP) by constructing a low-rank matrix approximation which is a k-dimensional subspace that approx-

imates Ak in the spectral or Frobenius norm. The solutions developed thus far have mostly focused on

randomized algorithms, and the set of columns selected by these algorithms have usually more than k

columns which is proven to contain a k-dimensional subspace arbitrarily close to Ak. The seminal paper of

Frieze, Kannan and Vempala [26] gives a randomized algorithm that selects a subset of columns C ∈ Rm×c of

A such that ‖A−ΠCA‖F ≤ ‖A−Ak‖F +ε‖A‖F , where ΠC is a projection matrix obtained by the truncated

SVD of C and c is a polynomial in k and 1/ε. Subsequent work [20, 21] introduced several improvements

on the dependence of c on k and 1/ε also extending the analysis to the spectral norm, while Rudelson and

Vershynin [46, 47] provided results of the form ‖A−ΠCA‖2 ≤ ‖A−Ak‖2 + ε
√
‖A‖2‖A‖F . Approximations

of the form ‖A−ΠCA‖F ≤ (1 + ε)‖A−Ak‖F have also been provided [19, 23]. Very recently, deterministic

algorithms were given by Çivril and Magdon-Ismail [17], and Guruswami and Sinop [34] with the same per-

formance guarantee. The result by Guruswami and Sinop [34] uses optimal number of columns. Both these

results construct a space of dimensionality more than k. A hybrid algorithm for selecting exactly k columns

was also proposed by Boutsidis et al. [7]. It selects k columns from a matrix A to approximate Ak, combining

the random sampling schemes and the deterministic column pivoting strategies exploited by QR algorithms.

Their algorithm provides a performance guarantee of the form ‖A−ΠCA‖F ≤ O
(
k
√

log k
)
‖A−Ak‖F . This

paper explicitly poses the complexity of CSSP as an open problem. The result therein was further improved

by Deshpande and Rademacher to
√
k + 1 approximation by an efficient implementation of volume sampling.

The numerical linear algebra community implicitly provides deterministic solutions for CSSP by approx-

imating Ak in the context of rank revealing QR factorizations, which primarily aim to determine the numer-

ical rank of A. These algorithms select exactly k columns and provide results of the form ‖A−ΠCA‖2 ≤

p(k, n)‖A−Ak‖2 where p(k, n) is a low degree polynomial in k and n [8, 9, 10, 12, 18, 31, 36, 44, 49].
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Column-Row Subset Selection Problem (CRSSP) was investigated in the theoretical computer science

community under the name CUR matrix decomposition. Authors of [22, 45] and [24] provide algorithms

with guarantees of the form ‖A− CUR‖F ≤ ‖A−Ak‖F + ε‖A‖F and ‖A− CUR‖F ≤ (1 + ε)‖A−Ak‖F
respectively. [24] poses the complexity of CRSSP as an open problem.

We would like to note that the algorithms providing RRQR factorizations listed above can also be used

to construct CUR decompositions, i.e. the whole matrix can be approximated by the multiplication of three

smaller matrices. Other important work which is not cited above includes those of Goreinov, Tyrtyshnikov

and Zamarashkin [28, 29, 30] under the name pseudoskeleton approximations where they introduced the

concept of maximum volume subset. They show that if the matrix A ∈ Rm×n is approximated by a rank-k

matrix within accuracy ε, then one can construct a factorization yielding ‖A− CUR‖2 ≤ ε(1+2
√
km+2

√
kn).

As a side note related to our investigation, we would like to point out that most work on randomized

matrix algorithms make use of the notion of statistical leverage which quantifies eigenvector localization.

Eigenvector localization refers to the situation when most of the mass of an eigenvector is concentrated on a

small number of coordinates. This phenomenon occurs in diverse scientific applications and in some of these

cases it can be meaningfully interpreted in terms of certain structural irregularities in the data underlined

by the existence of high degree nodes, localized small clusters etc (see [43] and references therein). So, it

is not improbable on the complexity side, that the results of this paper in fact do hold in a more general

setting that encompass the aforementioned notions. However, such an investigation is beyond the scope of

this paper. Our main goal is rather to make a single technical contribution on a specific problem.

3. Preliminaries and Notation

We introduce some preliminary notation and definitions. Vectors are denoted by small letters. ‖z‖2
or simply ‖z‖ denotes the Euclidean norm of z. Matrices are denoted by capital letters. Given a matrix

A ∈ Rm×n, we override the matrix notation with the set notation and denote the set A = {A1, A2, . . . , An}

where Ai denotes the ith column of A. Similarly, we let A = {A(1), A(2), . . . , A(m)} where A(j) denotes

the jth row of A. When A is used with two indices, Aij denotes the element of A on the ith row and jth

column. ‖A‖2 and ‖A‖F denote the spectral and the Frobenius norm of A respectively. Given a sub-matrix

C ∈ Rm×k of A, we also use the set theoretic notation C = {C1, C2, . . . , Ck} where Ci’s are the columns of

C. Similarly, for a sub-matrix R ∈ Rk×n of A, we have R = {R(1), R(2), . . . , R(k)}. Given a set of column

vectors S and a column vector v which is not in S, πS(v) is the orthogonal projection of v onto the space

spanned by S. It is well known that πS(v) = SS+v, where S+ is the pseudo-inverse of S (see for example

[27]). We also define d(v, S) to be the distance of v to the space spanned by S, namely ‖v − πS(v)‖2.
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4. Hardness of Subset Selection Problems

4.1. Label Cover Problems and the Unique Games Conjecture

One of the most successful approaches to proving hardness results for combinatorial optimization problems

is to create a gap preserving reduction from the Label Cover problem [2], which captures the expressive power

of a 2-prover 1-round proof system. The celebrated PCP theorem [3, 4] implies the NP-hardness of the Label

Cover problem by a canonical reduction from the gap version of MAX-3SAT. In the Label Cover problem,

we are given a bipartite graph with vertex sets U and V , and two sets of labels ΣU and ΣV for the vertices

of U and V , respectively. The edges between U and V are associated with a relation from ΣU to ΣV , which

are called constraints. The goal is to find a labelling for the vertices such that the number of satisfied edges

is maximized, where we say that an edge is satisfied if the label of two incident vertices is an element of the

relation associated with that edge.

Label Cover has been successfully used to derive a number of optimal inapproximability results (e.g.

[35]) often incorporating tools from Fourier analysis. Some central problems of interest have resisted to yield

strong inapproximability results under this general framework until a remarkable conjecture by Khot [39]

helped characterize their hardness. Khot conjectured that a special type of Label Cover problem, which we

call Unique Label Cover in this paper, is in fact NP-hard and exhibited reductions from this problem to some

well known combinatorial optimization problems. To this date, several strong and often optimal hardness

results have been established based on this conjecture, the so-called Unique Games Conjecture (UGC for

short). One famous example is the hardness of MAX-CUT [40]. The key differences of a Unique Label Cover

instance from the usual Label Cover instance are that the label sets are the same for both sides of the graph

(ΣU = ΣV ), and the relations associated with the edges are bijections. That is, the label of a vertex on

one side uniquely determines the label of the vertex on the other side, given that the edge between them

is satisfied. One further assumes that the gap version of the problem has imperfect completeness to avoid

any trivialities. These extra assumptions turn out to provide significant power over the widely accepted

P 6= NP assumption. Although whether the conjecture holds is still a major open problem, there is no

evidence against it thus far [13, 32, 50].

In this paper, we say that a problem is UG-hard if it is NP-hard assuming UGC. We will also make use of

a special Unique Label Cover problem, which we call the regular Unique Label Cover problem. In an instance

of this problem, both sides have the same number of vertices and each vertex is incident to the same number

of edges, i.e. the graph is regular. Formally,

Definition 4.1. A regular Unique Label Cover instance (r-ULC) is a triple L = (G = (U, V,E),Σ,Π) where

• G(U, V,E) is a regular bipartite graph with vertex sets U and V , and the edge set E. Furthermore G

satisfies the equality |U | = |V | = n, where each vertex has degree d (We assume d ≥ 25).

• Σ is the label set associated with the vertices in U and V , with Σ = {1, 2, . . . , R}
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• Π is the collection of constraints on the edge set, where the constraint on an edge e is defined as a

bijection Πe : Σ→ Σ.

The assumption d ≥ 25 is particularly important for our reduction and is easily satisfied by considering a

constant number of parallel repetitions. More specifically, it is clear that d ≥ 2 since otherwise we trivially

have perfect completeness. Hence, applying at most 5 parallel repetitions to the original r-ULC instance, we

have d ≥ 25 while blowing up the completeness by at most a constant factor. A labelling is an assignment

to the vertices of the graph, σ : {U, V } → Σ. It is said to satisfy an edge e = (u, v) if Πe(σ(u)) = σ(v). The

regular Unique Label Cover problem asks for an assignment σ such that the fraction of the satisfied edges is

maximum. This fraction is called the value of the instance. The following is implied by the original Unique

Games Conjecture. We do not repeat the construction to make the conjecture hold for our regular instance.

(see Lemma 1.5 of [14] for details):

Conjecture 4.2. The UGC implies that for every fixed ε, δ > 0, there exists R = R(ε, δ) such that it is

NP-hard to decide whether a regular Unique Label Cover instance has value at least 1− ε or at most δ.

4.2. The Reduction

Before providing formal details, we give the rationale behind our construction and how they are related

to the usual practice of proving hardness results. Most combinatorial optimization problems are defined on

graphs or Boolean variables. In order to derive hardness results based on the PCP theorem, one replaces

a vertex of a Label Cover instance with a Boolean hypercube whose vertices represent the variables or the

vertices of the graph. The entities across different hypercubes are then connected in a suitable way to

exploit the specific structure of the problem. This general paradigm was first introduced in [5] and has been

successfully used (e.g. [35]). In our case, although we do not use the canonical jargon, we implicitly make use

of the Boolean hypercube where the vertices of the hypercube represent vectors encoded in the usual sense,

namely binary strings. However, we will only use a subset of the vertices on the hypercube. For example,

the set of vectors we construct for CSSP-F will be expressed by the Hadamard code. Another practice

suggested by the general paradigm is to show the soundness of the reduction by proving the contrapositive.

One usually arrives at a contradiction in the Label Cover problem if the assumption that the soundness of

the target problem exceeds the desired threshold. This method prevails specifically for constraint satisfaction

problems. In contrast, we will follow the direct approach and show that if the Label Cover instance has

soundness δ, then the target problem has soundness larger than its completeness, which will yield the desired

result. We preferred such an approach as there is apparently no clear way of decoding the vectors with large

objective value (i.e. ‖A− CC+A‖F ) back to an assignment for the labels.

4.2.1. The reduction for CSSP-F

Given an r-ULC instance L, we first define the matrix A in CSSP-F instance. To this aim, we define a

column vector for each vertex-label pair in L, making 2nR vectors in total. (Note that |U | = |V | = n and

7



|Σ| = R). Each vector is composed of nd “blocks”, each of which represent a subspace allocated for an edge.

We will use set of block vectors for labels, which can be represented via the rows of a Hadamard matrix.

The same construction was used in [15]. Below, we give the lemma and restate the proof for the sake of

completeness as the construction is relevant. First, we say that a vector z is a binary vector if its entries

take values from the set {0, c} for some constant c > 0. Let z denote the binary vector z with reverse entries,

i.e. z(i) = 0 if z(i) = c, and z(i) = c if z(i) = 0 for all i in the range of the coordinates of z, for some c > 0.

Then, we have the following:

Lemma 4.3. [15] For q ≥ 2, there exists a set of vectors Z = {z1, . . . , z2q−1} of dimension 2q with binary

entries such that the following three conditions hold:

1. ‖zi‖2 = 1 for 2q − 1 ≥ i ≥ 1

2. zi · zj = 1
2 for 2q − 1 ≥ i > j ≥ 1.

3. zi · zj = 1
2 for 2q − 1 ≥ i > j ≥ 1.

Proof. Consider the Hadamard matrix H of dimension 2q×2q with entries −1 and 1, constructed recursively

by Sylvester’s method. Let B be the (2q − 1)× 2q matrix consisting of the rows of H for which we replace

−1’s with 0’s, excluding the all 1’s row. We claim that the normalized rows of B satisfy the requirements.

The first requirement is satisfied trivially. Note also that, for q ≥ 2, two distinct rows of H (excluding the

all 1’s vector) have exactly 2q−2 element-wise dot-products of the following four types: 1 ·1, 1 · (−1), (−1) ·1,

(−1) · (−1). Considering the construction of B, we have that the dot-product of any two of its rows is 2q−2

since all the products in H involving −1 vanishes for B. Similarly the dot-product of a row with the binary

complement of another row is 2q−2 by symmetry. The entries of the normalized row vectors are 1
2(q−1)/2 .

Hence, these translate into dot products of 1
2q−1 · 2q−2 = 1

2 for the normalized rows. Thus, the second and

the third requirement also hold.

By the Lemma, there exists a set of R vectors each of dimension 2dlog (R+1)e with the desired properties.

Let Au,a be the vector for the vertex label pair u ∈ U and a ∈ Σ. Similarly let Av,b be the vector for the

pair v ∈ V and b ∈ Σ. Both of these vectors are nd2dlog (R+1)e dimensional. The block of Au,a corresponding

to an edge e ∈ E is denoted by Au,a(e). The block of Av,b corresponding to an edge e ∈ E is denoted by

Av,b(e). We define

Au,a(e) =


zΠe(a)√

d
if e is incident to u

−→
0 if e is not incident to u.

Av,b(e) =


zb√
d

if e is incident to v

−→
0 if e is not incident to v
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The normalization factor 1/
√
d is to make sure that the column vectors have Euclidean norm 1 (Note that

there are exactly d nonzero blocks of a vector). This construction ensures that if an edge e = (u, v) is

satisfied, then there are vectors defined for u and v which are orthogonal on e, resulting in a dot-product of

0. Otherwise, the dot-product is 1
2d . Altogether, the matrix A is an M ×N matrix with M = nd2dlog (R+1)e

and N = 2nR, both having polynomial size in n, d and R. We define k = 2n to complete the reduction.

We now informally explain why the gadget in Lemma 4.3 combined with this reduction will provide the

hardness result we desire. Consider the YES case, i.e. where almost all the edges are satisfied. The labelling

in this case translates into a selection of subset of column vectors C, since we have defined a vector for each

vertex-label pair. For this choice of C, the distance of each vector to the subspace spanned by C has two

main parts. Suppose the vector is defined for a label of u ∈ U , say Au,a. These two parts are the distance

of u to the selected vector of u in C (say Au,b), and the distance of u to the selected vectors from all the

vertices incident to u, which are all in V . Note that Au,a is orthogonal to all the other selected vectors

except these. It turns out that if almost all the edges are satisfied, Au,b and the vectors selected from the

vertices incident to u are almost orthogonal and we can almost apply the Pythagoras Theorem for all the

projections of Au,a onto the vectors in C. The squared distance of Au,a to C is then given by {1− the length

of the total projection}. In the NO case, there is no labelling that satisfies more than a tiny fraction of

the edges. Then, it turns out that for any choice of C, the selected vectors make acute angles with each

other; more precisely, they are a little far away from being orthogonal. Hence, the length of the projection

of Au,a onto the subspace spanned by the vectors in C turn out to be smaller than the quantity given by

the Pythagoras Theorem. This means that Au,a is a little further away from C than it is in the YES case,

which will establish our result. The whole argument crucially depends on the fact that there is exactly one

vector defined for a specific vertex-label pair. This allows us to infer that the dot product of Au,a and Au,b

is exactly 1
2 . This condition is enforced by the Unique Label Cover instance.

We would like to briefly restate the significance of UGC here. If we reduced from the usual Label Cover

instance using the same gadget, one would possibly have several copies of the same vector from a vertex on

one side, since in that case, the projection function for an edge is not necessarily a bijection. As explained

in the introduction, this prevents us from analyzing the sum of the distances of all the non-selected column

vectors to the space spanned by the selected ones. The Unique Label Cover instance has the nice property

that, given our reduction, we know the exact positions of all the vectors we construct (e.g. they do not

have duplicates) and hence can analyze those distances. Note that, we did not need to assume UGC for the

volume maximization problem just because the quantity we try to control depends on the selected column

vectors alone and the usual Label Cover instance does not present any obstacles for analyzing it.

4.2.2. The reduction for CRSSP-F

The reduction for CRSSP-F is exactly the same as that of CSSP-F with the following differences: We

define the number of selected columns and rows to be c = 2n and r = M = nd2dlog (R+1)e. Hence, we

essentially define C to be the exact same C in the CSSP-F reduction and R = A. As noted, this choice
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of parameters readily stem from the fact that CRSSP-F is a generalization of CSSP-F. The hardness of

CRSSP-F will easily follow by considering a special case, which is essentially CSSP-F.

4.3. Analysis of the Reduction for CSSP-F

4.3.1. Completeness

Consider an instance of r-ULC for which there is a labelling that satisfies more than 1 − ε fraction of

the edges, i.e a labelling satisfying more than (1 − ε)nd edges. Let C be the set of vectors corresponding

to that labelling. That is, consider the set of vectors of the form Au,a and Av,b which satisfy σ(u) = a

and σ(v) = b for all u ∈ U and v ∈ V , where σ is the labelling function. Note that C contains exactly 2n

column vectors. We will use the geometric view of the Frobenius norm in order to compute ‖A− CC+A‖F ;

namely, we will compute the distances of all the column vectors not in C to the subspace defined by C.

There are 2nR − 2n such column vectors. To this aim, we first define ε(u) to be the number of unsatisfied

edges incident to u, so that we have
∑
u∈U ε(u) =

∑
v∈V ε(v) ≤ εnd. Take a specific Au,a ∈ C. We are

interested in d(Au,b, C) = ‖Au,b − πC(Au,b)‖2 = ‖Au,b − CC+Au,b‖2, the distance of Au,b to C for all b 6= a.

Clearly, the norm of the orthogonal projection of Au,b onto Au,a is ‖πAu,a(Au,b)‖2 = Au,a · Au,b = 1
2 . Let

v1, v2, . . . , vd be the neighbors of u and let e1, e2, . . . , en be the corresponding edges between Au,a and vi’s.

Let Avi,ai ∈ C for i = 1, . . . , d. Note that these vectors are all orthogonal to each other. If Au,a and Avi,ai

was orthogonal for all i, we would easily compute d(Au,b, C) and use the Pythagoras Theorem. However,

some ei might be unsatisfied. Hence, we consider the vector Au,a′ which is the orthogonal part of Au,a with

respect to Avi,ai ’s. Noting that Au,a · Avi,ai = 0 if ei is satisfied, Au,a · Avi,ai = 1
2d if ei is not satisfied and

using the Gram-Schmidt procedure, we have

Au,a′ = Au,a −
d∑
i=1

(Au,a ·Avi,ai)Avi,ai
‖Avi,ai‖22

= Au,a −
1

2d

ε(u)∑
j=1

Avij ,aij

where vij for j = 1, . . . ε(u) in the last expression are the set of vertices for which eij is not satisfied. Thus,

Au,a′ ·Au,b = Au,a ·Au,b −
1

2d

ε(u)∑
j=1

Avij ,aij ·Au,b

≥ 1

2
− 1

2d
· 1

2d
· ε(u)

=
1

2
− ε(u)

4d2

The inequality follows since Avij ,aij · Au,b ≤
1
2d . Because, if eij is satisfied Avij ,aij · Au,b = 1

2d . However, if

eij is not satisfied, that dot product might be 0. This observation also yields

d∑
i=1

(Avi,ai ·Au,b)2 ≥ 1

4d2
· (d− ε(u))

10



We gather the last two calculated quantity as

‖CC+Au,b‖
2

2 = (Au,a′ ·Au,b)2 +

d∑
i=1

(Au,b ·Avi,ai)2 (1)

≥
(

1

2
− ε(u)

4d2

)2

+
d− ε(u)

4d2
(2)

=
1

4
+

1

4d
− ε(u)

2d2
+

(ε(u))2

16d4
(3)

Now, we will start computing our target value by summing over all the column vectors. First, calculate the

vectors defined for u:

∑
b∈[R]
b 6=a

‖Au,b − CC+Au,b‖
2

2 ≤ (R− 1)

(
3

4
− 1

4d
+
ε(u)

2d2
− (ε(u))2

16d4

)

Note that the sum of this expression for all the vertices in U is the same as the sum for V as the two sides

are symmetric. Then, we get

‖A− CC+A‖2F = 2
∑
u∈U

∑
b∈[R]
b 6=a

‖Au,b − CC+Au,b‖
2

2

≤ 2n(R− 1)

(
3

4
− 1

4d

)
+ 2(R− 1)

∑
u∈U

(
ε(u)

2d2
− (ε(u))2

16d4

)
= 2n(R− 1)

(
3

4
− 1

4d

)
+

(R− 1)

d2

∑
u∈U

ε(u)− (R− 1)

8d4

∑
u∈U

(ε(u))2

≤ 2n(R− 1)

(
3

4
− 1

4d

)
+

(R− 1)

d2
· εnd.

The first inequality directly follows from our previous calculation. In establishing the second inequality, we

appealed to the fact that
∑
u∈U ε(u) ≤ εnd and ε(u) ≥ 0 for any u. Rearranging the last expression, we get

that there exists a sub-matrix C which satisfies

‖A− CC+A‖2F ≤ 2n(R− 1)

(
3

4
− 1

4d

)
+ n(R− 1)

( ε
d

)
. (4)

4.3.2. Soundness

Our goal is to show that, if there is no labelling that satisfies more than some δ fraction of the edges in

the r-ULC instance, then for all sub-matrices C, ‖A− CC+A‖2F is strictly larger than the right hand side

of (4). As usual, proving the soundness is more involved. In our case, we rule out the possibility of a good

sub-matrix via an argument which carefully considers all possible choices. First, we introduce some notation

and terminology. Let Aw =
⋃
a∈[R]Aw,a for all w ∈ U ∪ V . For a choice of sub-matrix C, let Cw = Aw ∩ C.

11



Given |Cw| = t ≥ 0, we say that C “selects” t vectors from w. We have the following two cases with respect

to the choice of C: (1) C selects more than one vector from a vertex. (2) C selects exactly one vector from

each vertex.

Case 1: We will show that, in this case, the value ‖A− CC+A‖F turns out to be at least as large as than

the case where C selects exactly one vector from each vertex. Then, the analysis reduces to the second case.

Suppose that C selects ` vectors from a vertex u for some ` ≥ 2. Then, there exists at least ` − 1 vertices

from which no vectors are selected. Let these vertices be S = {v1, v2, . . . , v`−1}. Let w1, w2, . . . , wd be the

neighbors of some v ∈ S. We know that the norm of the projection of Av,a for some a ∈ [R] onto the ti vectors

that C selects from wi can at most be 1
d by construction. Thus, summing the squares of Av,a’s projections

onto the vectors selected by C, we get ‖CC+Av,a‖
2

2 ≤
1
d2 · d = 1

d , which means ‖Av,a − CC+Av,a‖
2

2 ≥ 1− 1
d .

Summing over all a ∈ [R] and all v in S, we have

∑
v∈S
a∈[R]

‖Av,a − CC+Av,a‖
2

2 ≥ (`− 1)R

(
1− 1

d

)
= `R− `R

d
−R+

R

d
. (5)

Hence, we have calculated the distances of all vectors that belong to vertices from which no vectors are

selected from. Ideally, one also has to compute this value for the vectors of the vertex from which ` vectors

are selected, sum these two quantities and compare it with the second case. However, to make our calculations

more manageable, we will first show that if ` ≥ 5 the quantity in (5) already exceeds the value in the second

case. Hence, we will find an upper bound for the sum of distances of all the non-selected vectors from `

vertices in the case where exactly one vector is selected from these ` vertices (thus, for a total of `(R − 1)

vectors). Let w be a vertex among these ` vertices, say forming the set T , and let Aw,a be the selected vertex

from w. Let ε(w) be the number of unsatisfied edges incident to w. Then for a label b 6= a, we have already

computed that (from (1))

‖CC+Aw,b‖
2

2 ≥
1

4
+

1

4d
− ε(u)

2d2
+

(ε(u))2

16d4

≥ 1

4
+

1

4d
− ε(u)

2d2

≥ 1

4
+

1

4d
− 1

2d

=
1

4
− 1

4d

where the third inequality follows due to the fact that d ≥ ε(u). Thus, summing over all the non-selected

vectors and all the vertices in T , we get

∑
w∈T

b∈[R]−{a}

‖Aw,b − CC+Aw,b‖
2

2 ≤ `(R− 1)

(
3

4
+

1

4d

)
=

3`R

4
+
`R

4d
− 3`

4
− `

4d
. (6)
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Subtracting (5) from (6), we have

`R

4
− 5`R

4d
−R+

R

d
+

3`

4
+

`

4d
.

For d ≥ 25 and ` ≥ 5, it is easy to verify that `R
4 ≥

5`R
4d +R. Thus, it remains to analyze the case ` ≤ 4, which

requires the computations of the distances of the non-selected vectors of the vertex from which ` vectors are

selected. We will then add this value to (5) and compare it again with (6). To underline our argument, we

would like to note this computation is rather cumbersome for general ` and this is why we first ruled out

the case ` ≥ 5.

Now, we have that C selects ` vectors from a vertex u for some 4 ≥ ` ≥ 2. We will consider each value

of ` separately.

1. For ` = 2, suppose that the vectors selected from u are Au,a and Au,b. Let w1, w2, . . . wd be the

neighbors of u. We will find a lower bound for the distance of a vector Au,c to the space spanned by

C. It is clear that, as previously argued, the norm of the projection of Au,c onto the ti vectors selected

from wi can be at most 1/d. It is also clear that Au,c ·Au,a = 1
2 by construction. Orthogonalizing Au,b

against Au,a and then normalizing, we get A′u,b = (Au,b − 1
2Au,a)/(

√
3

2 ). Here, we have used the fact

that ‖(Au,b − 1
2Au,a)‖

2
=
√

3
2 , which can be easily verified by looking at two of the vectors provided by

Lemma 4.3. These are essentially the normalized rows of a 0-1 Hadamard matrix excluding the all 1’s

vector. As an example, consider the case q = 2 and the following vectors whose existence is guaranteed

by the lemma:

x =
(

1√
2

0 1√
2

0
)

y =
(

1√
2

1√
2

0 0
)

z =
(

0 1√
2

1√
2

0
)

,

where x− 1
2y =

(
1

2
√

2
− 1

2
√

2
1√
2

0
)

with ‖x− 1
2y‖2 =

√
3

2 . Hence, Au,c ·A′u,b = 2√
3
(Au,c ·Au,b−

1
2Au,c · Au,a) = 2√

3
( 1

2 −
1
4 ) = 1

2
√

3
. Noting that all the dot products are positive between the vectors

from u and wi’s (that they are forming acute angles) and using the Pythagoras Theorem, we have

‖CC+Au,c‖
2

2 ≤ (Au,c ·Au,a)2 + (Au,c ·A′u,b)2 +
1

d2
· d =

1

4
+

1

12
+

1

d
=

1

3
+

1

d
.

Summing the distances over all the (R− 2) vectors, we get
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∑
c∈[R]−{a,b}

‖A− CC+Au,c‖
2

2 ≥ (R− 2)

(
2

3
− 1

d

)
Summing this value with (5) and subtracting (6) for ` = 2, we get

R

6
− 5R

2d
+

5

2d
+

1

6
.

It is easy to see that this value is strictly greater than 0 for d ≥ 25.

2. For ` = 3, we don’t need to reiterate Gram-Schmidt procedure and compute the coordinates in detail.

The dot product Au,c ·A′u,b = 1
2
√

3
computed in the case ` = 2 is clearly an upper bound on the other

dot products. More specifically for ` = 3, suppose that the vectors selected from u are Au,a, Au,b and

Au,c. Let Au,a, A′u,b and A′u,c form an orthonormal set. For Au,d, we have

‖CC+Au,d‖
2

2 ≤ (Au,d ·Au,a)2 + (Au,d ·A′u,c)2 + (Au,d ·A′u,b)2 +
1

d2
· d =

1

4
+

1

12
+

1

12
+

1

d
=

5

12
+

1

d
.

Summing the distances over all the (R− 2) vectors, we get

∑
d∈[R]−{a,b,c}

‖A− CC+Au,d‖
2

2 ≥ (R− 2)

(
7

12
− 1

d

)
Summing this value with (5) and subtracting (6) for ` = 3, we get

R

3
− 15R

4d
+

15

4d
+

1

2
.

For d ≥ 25, this value is strictly greater than 0.

3. Similarly, for ` = 4, the dot product Au,c · A′u,b = 1
2
√

3
computed in the case ` = 2 is an upper bound

on the other dot products. Suppose that the vectors selected from u are Au,a, Au,b, Au,c and Au,d.

Let Au,a, A′u,b, A
′
u,c and A′u,d form an orthonormal set. For Au,f , we have

‖CC+Au,f‖
2

2 ≤ (Au,d ·Au,a)2 + 3(Au,d ·A′u,d)2 +
1

d2
· d =

1

4
+

1

4
+

1

d
=

1

2
+

1

d
.

Summing the distances over all the (R− 2) vectors, we get

∑
f∈[R]−{a,b,c,d}

‖A− CC+Au,f‖
2

2 ≥ (R− 2)

(
1

2
− 1

d

)
Summing this value with (5) and subtracting (6) for ` = 4, we get

R

2
− 5R

d
+

5

d
+ 1,

which is again strictly greater than 0 for d ≥ 25.
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Case 2: In this case, C selects exactly one vector from each vertex. For a vertex u, let Au,a be the vector

selected by C. We will compute the distances of all other vectors from u to the space spanned by C. Let Au,b

such a vector and let v1, v2, . . . , vd be the neighbors of u from which C selects Av1,a1 , Av2,a2 , . . . , Av3,a3 and

let e1, e2, . . . , en be the corresponding edges between Au,a and vi’s. Noting that Au,a ·Avi,ai = 0 if (u, vi) is

satisfied and Au,a · Avi,ai = 1
2d otherwise and denoting the number of satisfied edges adjacent to u by δ(u),

the orthogonal part of Au,a against Avi,ai ’s is

A′u,a = Au,a −
d∑
i=1

(Au,a ·Avi,ai)Avi,ai
‖Avi,ai‖

2
2

= Au,a −
1

2d

d−δ(u)∑
j=1

Avij ,aij ,

where vij for j = 1, . . . , d− δ(u) are the set of vertices for which eij is not satisfied. Thus,

Au,a′ ·Au,b = Au,a ·Au,b −
1

2d

d−δ(u)∑
j=1

Avij ,aij ·Au,b

=
1

2
− 1

2d
· 1

2d
· (d− δ(u))

=
1

2
− (d− δ(u))

4d2

Note that
∑d
i=1(Au,b ·Avi,ai)2 ≤ 1

4d2 · d = 1
4d . So, the norm of the projection of Au,b onto C is

‖CC+Au,b‖
2

2 = (Au,a′ ·Au,b)2 +

d∑
i=1

(Au,b ·Avi,ai)2

≤ 1

4d
+

(
1

2
− d− δ(u)

4d2

)2

=
1

4
+

1

4d
+

1

16d4
(d2 + (δ(u))2 − 2dδ(u))− 1

4d2
(d− δ(u))

=
1

4
+

1

16d2
+
δ(u)

4d2
− δ(u)

8d3
+

(δ(u))2

16d4

Computing over all the vectors from u:

∑
b∈[R]
b6=a

‖Au,b − CC+Au,b‖
2

2 ≥ (R− 1)

(
3

4
− 1

16d2
− δ(u)

4d2
+
δ(u)

8d3
− (δ(u))2

16d4

)

This in turn yields
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‖A− CC+A‖2F = 2
∑
u∈U

∑
b∈[R]
b 6=a

‖Au,b − CC+Au,b‖
2

2

≥ 2n(R− 1)

(
3

4
− 1

16d2

)
+ 2(R− 1)

∑
u∈U

(
δ(u)

4d3
− δ(u)

2d2
− (δ(u))2

8d4

)
≥ 2n(R− 1)

(
3

4
− 1

16d2

)
− (R− 1)

∑
u∈U

δ(u)

d2
− (R− 1)

∑
u∈U

(δ(u))2

4d4

≥ 2n(R− 1)

(
3

4
− 1

16d2

)
− (R− 1)

δnd

d2
− (R− 1)

nd2

4d4

= 2n(R− 1)

(
3

4
− 1

4d

)
+ 2n(R− 1)

(
1

4d
− 1

16d2

)
− n(R− 1)

(
δ

d
+

1

4d2

)
= 2n(R− 1)

(
3

4
− 1

4d

)
+ n(R− 1)

(
1

2d
− 1

8d2
− δ

d
− 1

4d2

)
= 2n(R− 1)

(
3

4
− 1

4d

)
+ n(R− 1)

(
1− 2δ

2d
− 3

8d2

)
,

where in the third inequality we have used the fact that
∑
u∈U δ(u) ≤ δnd and δ(u) ≤ d for any u. Compare

this expression with the one we found for the completeness, i.e. the expression (4):

‖A− CC+A‖2F ≤ 2n(R− 1)

(
3

4
− 1

4d

)
+ n(R− 1)

( ε
d

)
.

It is clear that
(

1−2δ
2d −

3
8d2

)
> ε

d in the limit of ε and δ approaching 0 and given the fact that d ≥ 25. Hence,

the soundness exceeds the completeness. In other words, the value returned by any subset of vectors in the

NO case is larger than the value returned by a specific subset in the YES case. Recall that the hardness of

CRSSP-F easily follows from the hardness of CSSP-F as it is a generalization. This completes the proof

of Theorem 1.1. In fact, noting that d is a constant, the ratio of the values for the NO case and YES case

tells us that there cannot be any PTAS for these problems assuming UGC.

5. Final Remarks

We believe that our reduction implies UG-hardness of the problems we consider in spectral norm, too.

However, we have not been able to show so. Indeed, Frobenius norm of a matrix has a natural geometric

interpretation as the sum of squared norms or distances, whereas spectral norm is much more complicated

to analyze. Another obvious question is whether one can find unconditional hardness results for these

problems. We suspect it is possible by using the techniques of [33]. On the algorithmic side, one might also be

interested in finding approximation algorithms for these problems comparing the value of the solution found

by the algorithm ‖A− CC+A‖ with the optimal value ‖A− CoptC+
optA‖, rather than the value ‖A−Ak‖.

A constant factor approximation algorithm would be interesting. Similarly, in almost all the algorithmic

results, the quality of the solution is compared to the best subspace revealed by the truncated SVD of the
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matrix (e.g. ‖A−Ak‖F ), hence our result ruling out PTAS are not comparable with them.

Acknowledgments: We would like to thank all the referees for their insightful comments which improved

the presentation of the paper.
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