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Abstract

We describe a 4
3 -approximation algorithm for the traveling salesman problem in which the

distances between points are induced by graph-theoretical distances in an unweighted graph.
The algorithm is based on finding a minimum cost perfect matching on the odd degree vertices
of a carefully computed 2-edge-connected spanning subgraph.

1 Introduction

The traveling salesman problem (TSP) undoubtedly stands out as the most famous of all com-
binatorial optimization problems. From the viewpoint of approximation algorithms, so does the
problem of determining the integrality gap of the Held-Karp relaxation [3] for Metric TSP, the
special case of the problem in which the points of the input form a metric space. In particular, it
has long been conjectured that there exists a 4

3 -approximation algorithm for Metric TSP. The ratio
3
2 of the algorithm of Christofides [1] dating back to more than 45 years ago stood as the best for
approximating the problem until very recently an algorithm with factor 3

2 − ϵ for some ϵ ≈ 10−36

was announced in [4].
The lower bound of 4

3 on the integrality gap of the Held-Karp relaxation holds even for a special
class of metric spaces whose points are the vertices of an unweighted graph, and the distance
function is induced by the graph-theoretical distances. We call this problem Graphic TSP, which
to a great extent captures the difficulty of and is a natural gateway to Metric TSP. For Graphic
TSP, a series of improvements including [2, 5, 6] resulted in the factor 7

5 by Sebö and Vygen [7].
The purpose of this paper is to describe a polynomial-time 4

3 -approximation algorithm for Graphic
TSP. We also show that the cost of the solution returned by the algorithm is not more than 4

3
times the optimal value of the natural LP relaxation for the 2-edge-connected spanning subgraph
problem. This is the first improvement on the problem after a decade, and provides a hint that
there is indeed a 4

3 -approximation algorithm for Metric TSP.
Our idea is based on finding a matching on the odd degree vertices of a carefully computed

2-edge-connected spanning subgraph (2-ECSS) to create an Euler tour.

2 Preliminaries

We will use the lower bound derived from the dual of the natural LP relaxation for the 2-edge-
connected spanning subgraph problem. This is also a lower bound for the cost of a 2-vertex-
connected spanning subgraph (2-VCSS) and a TSP tour. Here, δ(S) denotes the set of edges with
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one end in the cut S and the other not in S.

minimize
∑
e∈E

xe (EC)

subject to
∑

e∈δ(S)
xe ≥ 2, ∀ ∅ ⊂ S ⊂ V,

1 ≥ xe ≥ 0, ∀ e ∈ E.

The following is the dual of (EC).

maximize
∑

∅⊂S⊂V

2yS −
∑
e∈E

ze (EC-D)

subject to
∑

S:e∈δ(S)
yS ≤ 1 + ze, ∀e ∈ E,

yS ≥ 0, ∀ ∅ ⊂ S ⊂ V,

ze ≥ 0, ∀ e ∈ E.

We assume that the input graph G is 2-vertex-connected. Otherwise, the algorithms we will
describe can be executed on blocks (maximal 2-vertex-connected subgraphs) of G separately. This
is without loss of generality, since the value of an optimal solution is the sum of those of blocks,
and we can argue the approximation ratio only within a block. Given a vertex v ∈ V and a 2-
VCSS F , the degree of v on F is denoted by degF (v). The vertex v is called a degree-d vertex
on F if degF (v) = d. A degree-d vertex for d ≥ 3 is called a high-degree vertex. For a path
P = v1v2 . . . vk−1vk, v1 and vk are the end vertices of P , all the other vertices are the internal
vertices of P . In particular, v2 and vk−1 are called the side vertices of P . A path whose internal
vertices are all degree-2 vertices on F is called a plain path on F . A maximal plain path is called
a segment. The length of a segment is the number of edges on the segment. If the length of a
segment is ℓ, it is called an ℓ-segment. A 1-segment is also called a trivial segment. For ℓ > 1,
an ℓ-segment is called a non-trivial segment. A non-trivial ℓ-segment with ℓ ≤ 3 is called a short
segment, otherwise a long segment. If the removal of a segment from F results in a solution that
is not 2-vertex-connected, the segment is called a weak segment on F , otherwise a strong segment
on F . A pair of weak segments whose removal from F results in a disconnected solution is called
weak segment couple.

3 Constructing a Preliminary 2-VCSS

3.1 Degree Reduction and Decomposition of F

The first step of Algorithm 1 takes an inclusion-wise minimal 2-VCSS F of G (Recall our assumption
from the previous section). It then performs a decomposition F = F1 ∪ F2, where F1 is a subcubic
graph. It is computed as described in Algorithm 2, which checks if vertices of degree at least 4
can be short-cut by switching to the metric completion of the solution. In particular, around such
a vertex v, it checks if introducing a new edge of weight 2, bypassing the two edges incident to v
maintains a 2-vertex-connected solution. If there already exists an edge in F between the vertices
of the short-cut, then it is included into F1 without introducing an edge of weight 2. This is called
a concatenation. If the condition for a concatenation is not satisfied, then there are two distinct
segments with identical end vertices v and v′. These two segments are accumulated in F2. At
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Algorithm 1: 2-VCSS(G(V,E))

1 Let F be an inclusion-wise minimal 2-VCSS of G
2 Perform the decomposition F = F1 ∪ F2 as described in Algorithm 2

3 H ← E \ F
4 while there is a critical edge e ∈ H do
5 // Improvement operation
6 F ′ ← F ∪ {e}
7 Perform deletion operation on F ′ in the order F, e to maintain a 2-VCSS
8 F ← F ′

9 H ← E \ F
10 Perform the decomposition F = F1 ∪ F2 as described in Algorithm 2

11 return F

Algorithm 2: Degree Reduction and Decomposition(F )

1 F1 ← F
2 F2 ← ∅
3 while there exists a vertex v with degF1(v) ≥ 4 do
4 if there are neighbors u and w of v on F1 such that F1 \ {(u, v), (w, v)} ∪ (u,w) is a

2-VCSS then
5 if (u,w) /∈ F1 then
6 Introduce the edge (u,w) with weight 2

7 F1 ← F1 \ {(u, v), (w, v)} ∪ (u,w)

8 else
9 Let S1 and S2 be two segments with identical end vertices v and v′

10 F1 ← F1 \ {S1, S2}
11 F2 ← F2 ∪ {S1, S2}

12 Remove redundant trivial segments from F
13 return (F1, F2)

the end of the procedure, redundant trivial segments are removed from F . The resulting F1 is a
subcubic graph, and F2 contains segment pairs whose end vertices are identical. It is clear that the
algorithm can be implemented in polynomial time. An example of the described decomposition is
given in Figure 1.

Notice by definition of the procedure that a segment S on F2 might consist of a concatenation of
more than one segment with edges in E. Such a segment thus belonging to S is called a sub-segment
on F2 to distinguish it from a segment on F2, e.g., S. If the length of a sub-segment is ℓ, it is called
an ℓ-sub-segment. Let P be a sub-segment on F2 with end vertices w,w′, belonging to a segment
S on F2 with end vertices t, t′ (We allow the case P = S). If w /∈ {t, t′}, then it is called a sub-end
vertex. An edge e = (u, v) ∈ E \F is called a critical edge with respect to F if u is a side vertex of
P and v ∈ V .
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F

(a)

F1

F2

(b)

Figure 1: An example of a decomposition of F ; only the high-degree vertices are shown.

3.2 Improvement Operations

After the described decomposition, Algorithm 1 considers modifications on F via what we call
improvement operations. The basic idea is to consider the edges not in F , which can improve the
cost of the solution, or switch to a solution more amenable to analysis. To this aim, consider the set
H, which is initialized to E \ F . The algorithm iterates over the critical edges e in H, attempting
to perform an improvement operation. It performs a specific deletion operation on F ′ = F ∪ {e},
considering the deletion of edges in the order F , e (the order of edges within F is immaterial),
and deletes the edge considered in a particular iteration provided that its removal maintains a
2-VCSS. F is updated to the result of this operation, and the set H is also updated accordingly.
The iteration completes by the decomposition described in Algorithm 2.

For the following proposition, let e = (u, v) be a critical edge with respect to F = F1 ∪ F2, the
running solution at the beginning of an iteration of the main loop of Algorithm 1. Suppose e is
included into the solution in the improvement operation, where u is a side vertex of a sub-segment
P on F2 that belongs to a segment S on F2 with end vertices t, t′.

Proposition 1. The edge e cannot be an edge of a segment on F ′
2 of a decomposition F ′ = F ′

1∪F ′
2,

where F ′ is the running solution in a later iteration.

Proof. Suppose the algorithm upon including e, excludes (u,w), where w is an end vertex of P .
Let w′ be the other end vertex of P . Assume e is an edge of a segment on F ′

2 of a decomposition
F ′ = F ′

1 ∪F ′
2, where F ′ is the running solution in a later iteration. We specifically depict the cases

in which v ∈ V (F1) \ {t, t′}, where V (F1) denotes the set of vertices of the segments on F1. Other
cases essentially derive the same contradiction with no need for depiction.

Case 1. P is the only sub-segment belonging to S: Observe that there exists another segment
on F ′

2 with end vertices v and w′, since there are only segments with identical end vertices in F ′
2.

This however derives a contradiction to the decomposition of F ′, since degF ′(w′) ≥ 5 and there is
a concatenation via w′, which maintains 2-vertex-connectivity. This is shown in Figure 2. If there
are two segments with end vertices v and w′, we get another contradiction, as shown in Figure 3.
These two configurations generalize to odd and even number of segments between v and w′ via the
decomposition described in Algorithm 2, so that e cannot be an edge of a segment on F ′

2.
Case 2. P is not the only sub-segment belonging to S:
Case 2a. There exists another segment on F ′

2 with end vertices v and w′: This derives the same
contradictions as in Case 1, namely the analogues of Figure 2 and Figure 3.

Case 2b. There exists another segment on F ′
2 with end vertices v and t′: This derives a contra-

diction by degF ′(t′) ≥ 5, similar to the one in Case 1, this time concatenations via t′.

By the conclusion of Proposition 1, e cannot be deleted in a later iteration. Furthermore, a
deleted edge in an improvement operation considered in the proposition is not a critical edge. We
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Figure 2: Contradiction to (u, v) being an edge of a segment on F ′
2 in the proof of Proposition 1.

Here, v ∈ V (F1), P is the only sub-segment belonging to S, and there is a single segment with end
vertices v and w′; (c) is the result after the decomposition
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Figure 3: Contradiction to (u, v) being an edge of a segment on F ′
2 in the proof of Proposition 1.

Here, v ∈ V (F1), P is the only sub-segment belonging to S, and there are two segments with end
vertices v and w′; (c) is the result after the decomposition

thus have that the first loop of Algorithm 1 terminates in at most |E| steps, and the following
holds.

Lemma 2. Let u be a side vertex of a sub-segment P on F2. Then there is no v ∈ V such that
e = (u, v) ∈ E \ F .

It is clear that the algorithm can be implemented in polynomial time, where one can use a
simple graph traversal algorithm for checking feasibility.

4 Constructing an Euler Tour

The algorithm to construct a TSP tour is given in Algorithm 3. It works on the solution returned
by Algorithm 1, which we denote by F , and considers the decomposition of F as described in
Algorithm 2.

Let K be the set of degree-3 vertices of F1. A K-join is a subset M ⊆ E such that in the graph
(V,M), K is the set of odd degree vertices. Let F ′

1 = (V ′
1 , E

′
1), where V ′

1 is the set of degree-3

Algorithm 3: TSP(G(V,E))

1 F ← 2-VCSS(G(V,E))
2 Perform the decomposition F = F1 ∪ F2 as described in Algorithm 2
3 Find a minimum cost Euler tour T = F ∪M , where
4 (1) M is one of the three K-joins for the set of degree-3 vertices K of F1

5 (2) T excludes redundant double edges without violating the Eulerian property

6 return (F, T )
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Figure 4: Examples of deletion operations on T , removing redundant double edges
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(b)

Figure 5: Modification of F ′
1 so as to create three perfect matchings

vertices of F1, and E′
1 is the set of segments on F1. Then F ′

1 is a bridgeless cubic multigraph
by definition. In this case, a K-join on F1 is a perfect matching on F ′

1. We will show below
that F ′

1 can be transformed into a 3-edge-colorable cubic simple graph. The algorithm considers
three disjoint perfect matchings on this graph one by one and selects a cheapest cost Euler tour
T , which is computed by augmenting F with the K-join M corresponding to the matching. In
constructing T , certain redundant double edges must be deleted for each choice of M . In particular,
after augmenting F with M , the algorithm performs a deletion operation in the vein of the one
described in Subsection 3.2: The doubled edges whose removal do not violate the Eulerian property
are excluded from T . These are called redundant edges. Other edges are called non-redundant edges.
Examples are given in Figure 4.

We now show that F ′
1 can be modified without changing edge costs, so that it has three disjoint

perfect matchings. Recall that F ′
1 is a bridgeless cubic multigraph. Given two parallel edges in this

multigraph, subdivide both of them by introducing two new vertices, and define a zero cost edge
between them. This operation performed on all parallel edges transforms F ′

1 into a cubic simple
graph, which by Vizing’s theorem [8] admits either a 3-edge-coloring or a 4-edge-coloring. If F ′

1

admits a 3-edge-coloring, then we have a partition of the edges into three perfect matchings. In
this case consider a 3-edge-coloring around a subdivided edge, which colors the newly added edge
with 1, and the others with 2 and 3. Assign the cost 0 to each of the colors on one side, leaving
the original costs of the parallel edges on the other side (See Figure 5a for an illustration). This
ensures that there is exactly one edge of cost 0 in each of the three matchings, and the other costs
in the modified graph are identical to those of the original graph. Suppose now that F ′

1 does not
admit a 3-edge-coloring. By Petersen’s theorem, there is a perfect matching M1 on F ′

1. Color the
edges of this matching with 1. Discard the edges in M1 from F ′

1, find a maximal matching M2,
and color its edges with 2. Discard the edges of M2 to find another maximal matching on the
residual graph, and color its edges with 3. There remain two edges, which must be colored with 4.
Subdivide both of these edges by introducing two new vertices, and define a zero cost edge between
them. This operation makes F ′

1 3-edge-colorable, where we can color the newly introduced edge
with 1. We thus have that F ′

1 can be partitioned into three perfect matchings. Perform the same
cost assignment as in the previous case, which is depicted in Figure 5b. It is clear that all these
modifications can be performed in polynomial-time.
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5 Proof of the Approximation Ratio

Let (F, T ) be a solution returned by Algorithm 3, where F = F1 ∪ F2 as described in Algorithm
2. We will show that the cost of T is at most 4

3 times the total value of a feasible dual solution
in (EC-D). For brevity, c(K) denotes the total cost of the segments represented by K. Given a
segment S, denote the cost incurred by the segment on T by cT (S). In general, we denote the total
cost of the segments in K on T by cT (K). V (F1) denotes the set of vertices of the segments on F1,
and W (F1) denotes the set of sub-end vertices, which have incident edges in F1.

Lemma 3.
cT (F1)

|V (F1)| − |W (F1)|
≤ 4

3
.

Proof. Recall that the algorithm selects T among all the possible three choices implied by the three
disjoint perfect matchings on F ′

1, the one leading to the cheapest cT (F1). Thus, we have that
3cT (F1) is upper bounded by the sum implied by all the three choices. Let F0 ⊆ E implied by F1,
i.e., with no short-cut edges via the metric completion. Let e ∈ F0. If e is not a redundant double
edge in any of the resulting three tours, then it is counted 4 times in the aforementioned sum:
Once in two of the choices taking it as single, and twice in one choice taking it as double. If all the
double edges were non-redundant, then the sum would be 4c(F1). We now show that the redundant
double edges reduce this sum by 4c(F1) − 4|V (F1)| + 4|W (F1)| = 4c(F0) − 4|V (F1)| + 4|W (F1)|,
which completes the proof.

If e is a redundant double edge, then it decreases the aforementioned sum by 2. Thus, it suffices
to show that there are at least 2c(F0) − 2|V (F1)| + 2|W (F1)| redundant double edges in F0. Let
k be the sum of the number of strong segments in F0, the number of weak segment couples in F0,
and |W (F1)|.

Claim 4. Excluding the case F0 being a single cycle, the number of redundant double edges is k.

Proof. Given a high-degree vertex v on F0, the number of redundant double edges in each of the
strong segments incident to v is one more than the number of sub-end vertices on the segment.
Similarly, a minimal solution returned by the algorithm excludes a double edge from each weak
segment couple, which does not violate feasibility.

Given this, we argue by induction on k. For the base case k = 3, F0 has two degree-3 vertices,
and 2c(F0)− 2|V (F1)|+2|W (F1)| = 2, where |W (F1)| = 0. So k ≥ 2, and the claim holds. Clearly,
increasing the number of sub-end vertices by 1 increases the number of redundant double edges

u

v

(a)

u v

(b)

u

v

(c)

Figure 6: (a) Introduction of two new strong segments. (b) Introduction of one new strong segment
and one new weak segment couple. (c) Introduction of three new strong segments, terminating one
weak segment couple.
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by 2. In the inductive step for the other cases, when we introduce a new path in F0 between two
vertices u and v, we are bound to do one of the following:

� introduce two new strong segments,

� introduce one new segment and one new weak segment couple,

� terminate one weak segment couple, introduce three new strong segments.

All these cases are depicted in order in Figure 6. The restrictions listed are due to the procedure
described in Algorithm 2: If we assume that the only (strong) segment we introduce is via the
introduced path, then there must already be another path between u and v, resulting in the inclusion
of both of these paths into F2 (See for example, the segments in the upper part of Figure 1a). Since
the new path increases 2c(F0)− 2|V (F1)| by 2, the induction and the proof is completed.

Theorem 5. There exists a feasible dual solution in (EC-D) with total value D, such that

|T | ≤ 4

3
D.

Proof. We construct a feasible dual solution in (EC-D) with total value at least 3
4 |T |. Recall that

W (F1) denotes the set of sub-end vertices, which have incident edges in F1. Define y{u} = 0 for all
u ∈ W (F1). Let X(F ) denote the set of end vertices of the segments on F2. Define y{v} = 1/2 for
all v ∈ V (F1) \ (W (F1) ∪X(F )).

We now describe all the dual assignments on F2 associated to the segments with given end
vertices t, t′ ∈ X(F ). Let S1 be the set of short segments in this set on which there is no sub-end
vertex, i.e., the end vertices of these short segments are t, t′. If S1 is non-empty, define y{v} = 1 for
the internal vertices v of all the segments in S1. If the segment is a 3-segment, define ze = 1 for the
middle edge e of the segment to maintain feasibility. Abusing the notation and denoting the set of
vertices of these segments by S1, define yS1 = 1/2. Note that these assignments define a feasible
dual solution by Lemma 2.

Let S2 be the set of long segments on which there is no sub-end vertex. If S2 is non-empty,
define y{v} = 1 for the side vertices v of all the segments in S2. For the other internal vertices u of
the segments in S2, let y{u} = 1/2. For an edge e of a segment that is between a side vertex and
the adjacent internal vertex, define ze = 1/2 to maintain feasibility. For an edge f between the side
vertex of a segment and t or t′, assign zf = 1/2 to maintain feasibility. This is due to the definition
of yS1 = 1/2 in the previous paragraph. These assignments also define a feasible dual solution by
Lemma 2.

Finally, let S3 be the set of segments on which there is at least one sub-end vertex. If S3 is
non-empty, apply the same dual value assignments on the internal vertices of the sub-segments as
applied to S2, which form a dual feasible solution by Lemma 2. Define y{v} = 0 for all the sub-end
vertices v.

Let D2 be the total dual value in the objective function of (EC-D), defined as above for the
segments on F2, including the duals containingX(F ). The total dual value defined for F1, excluding
the duals containing X(F ), is |V (F1)| − |W (F1)| − |X(F )|. We aim to show

D

|T |
=
|V (F1)| − |W (F1)| − |X(F )|+D2

cT (F1) + c(F2)
≥ 3

4
.

Recall by Lemma 3 that
|V (F1)| − |W (F1)|

cT (F1)
≥ 3

4
.
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(a) Input graph (b) A solution by the algorithm

(c) An optimal solution

Figure 7: A tight example for the algorithm

Thus, it suffices to show
D2 − |X(F )|

c(F2)
≥ 3

4
.

We argue this inequality over a vertex pair t, t′ ∈ X(F ). All the segments in S1, S2, and S3 are
optimally covered by the dual assignment, i.e., the total dual value defined for an ℓ-segment is ℓ. Let
C be the total cost of the segments associated to t, t′. Then the associated dual value D2 = C + 1,
where the term 1 is contributed by yS1 = 1/2. This implies D2− |X(F )| = C +1− 2 = C − 1. The
ratio of this with the total cost C−1

C ≥ 3
4 , since C ≥ 4 by definition. This completes the proof.

6 A Tight Example

A tight example for Algorithm 3 is given in Figure 7. Algorithm 2 selects the three k-segments in
Figure 7b, where k is a large odd positive integer. The cost of the Euler tour is then 4k − 2. The
optimal solution is the Hamiltonian cycle shown in Figure 7c, with a total cost of 3k − 1.
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