
Scheme-Theoretic Approach to Computational Complexity. I. The

Separation of P and NP

Ali Çivril*

September 23, 2024

Abstract

We lay the foundations of a new theory for algorithms and computational complexity by
parameterizing the instances of a computational problem as a moduli scheme. Considering the
geometry of the scheme associated to 3-SAT, we separate P and NP. In particular, we show that
no deterministic algorithm can solve 3-SAT in time less than 1.296839n in the worst case.

1 Introduction

This paper introduces the rudiments of a new theory for algorithms and computational complexity
via the Hilbert scheme. One of the most important consequences of the theory is the resolution of
the conjecture P ̸= NP.

An easily understood reason for the difficulty of the problem we consider is the superficial
similarity between the problems in P and NP-complete problems. More concretely, one has not been
able to find a metric somehow measuring the time complexity of a problem so that the difference
between the values for 3-SAT and 2-SAT is large enough. Extracting this intrinsic property from a
problem seems out of reach when it is treated by only combinatorial means.

From an elementary point of view, a computational problem is considered to be a language
recognized by a Turing machine. Through a slightly refined lens, it is a Boolean function computed
by a circuit. We recognize the existence of a much deeper perspective: A computational problem is
a (moduli) scheme formed by its instances, and an algorithm is a morphism geometrically reducing
it to a single point. This opens the possibility of understanding computational complexity using the
language of category theory. In particular, we define a functor from the category of computational
problems to the category of schemes parameterizing the instances of a computational problem,
albeit currently restricted to k-SAT.

For concreteness, consider a satisfiable instance of 3-SAT represented by the formula ϕ with vari-
ables x1, . . . , xn. We associate with this instance all the solutions that make ϕ satisfiable, which
can be expressed as the zeros of a polynomial ϕ(x1, . . . , xn) over F2. We then identify this infor-
mation by considering the closed subscheme Proj F2[x0, x1, . . . , xn]/(ϕ(x0, x1, . . . , xn)). The global
scheme corresponding to the computational problem 3-SAT is the Hilbert scheme parameterizing
these closed subschemes together with a set of others to ensure connectedness.

The next step is to unify the notion of a reduction and an algorithm in the new setting. Consider
1-SAT ∈ P. In order to separate P and NP, one needs to rule out a polynomial-time reduction f

*Istanbul Atlas University, Computer Engineering Department, Kagithane, Istanbul Turkey, e-mail:
ali.civril@atlas.edu.tr, website: www.alicivril.com

1

satisfying x ∈ 3-SAT ⇔ f(x) ∈ 1-SAT. We extend this line of thinking by introducing the simplest
object in the category of computational problems: the trivial problem defined via an instance with
an empty set of variables, which may be represented by a single point. In our new language,
solving a problem is nothing but reducing it to the trivial problem. One then needs to show that,
in geometric terms we will later formalize, it is impossible to reduce the scheme of 3-SAT to a single
point with polynomial number of unit operations.

2 Computational Problems and the Extended Amplifying Functor

2.1 Computational Problems

A computational problem (Π,Π) consists of a set Π of positive instances and a set Π of negative
instances, where each instance is represented by a finite string over a finite alphabet. Solving (Π,Π)
amounts to deciding, given an instance, whether it is a positive instance or a negative instance. By
an instance is meant a positive instance in the rest of the paper, unless otherwise stated. We also
briefly denote a given problem by its set of positive instances Π. With an abuse of notation, if Π
consists of a single instance I, then I also denotes the computational problem Π.

We will specifically consider the computational problem k-SAT defined via the variable set
{x1, . . . , xn}. An instance of this problem is a satisfiable Boolean formula in CNF with each clause
containing k literals. In this case we also consider the representation of an instance by a finite set
of polynomial equations over F2, as will be exemplified below. We thus use a polynomial system as
a synonym for an instance. The synonym for a single polynomial equation is a clause. A solution
for an instance in this case is an assignment to the variables in F2 satisfying all the equations of
the instance.

We give below examples of instances and negative instances of some computational problems,
both in the classical logical form and in the algebraic form as polynomial systems over F2. The
simplest problem is what we denote by TRIVIAL or T for short, defined via a single instance and a
single negative instance, both with an empty set of variables. These instances are denoted by True
and False. Their algebraic form are {0 = 0} and {1 = 0}, respectively.

Problem: TRIVIAL or T
Logical form: True, False.
Algebraic form: {0 = 0}, {1 = 0}.

Problem: 1-SAT
Logical form: {x}, {x1 ∧ x2}, {x1 ∧ x1}.
Algebraic form: {1− x = 0}, {1− x1 = 0, x2 = 0}, {1− x1 = 0, x1 = 0}

Problem: 3-SAT
Logical form: {(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5)}.
Algebraic form: {(1− x1)x3(1− x4) = 0, x2(1− x3)x5 = 0}.

2.2 Representability of the Hilbert Functor

Let S be a scheme, and let X ⊆ Pn
S be a closed subscheme. Define

H(X/S) := {Z ⊆ X is a closed subscheme, Z → S is flat}.

2

The Hilbert functor HX/S is the functor T 7→ H(X ×S T/T) for any S-scheme T . We set S =

Spec F2, and denote HX/F2
briefly as HX .

LetX be a projective scheme over F2, and let Z ⊆ X be a closed subscheme. Let F be a coherent
sheaf on Z. The Hilbert polynomial of Z with respect to F is P (Z,F)(m) := χ(Z,F (m)), where
F (m) is the twisting of F by m, and χ(Z,F) denotes the Euler characteristic of F given by

χ(Z,F) :=

dim Z∑
i=0

(−1)idimF2
H i(Z,F). (1)

The Hilbert polynomial of Z is
P (Z)(m) := χ(Z,OZ(m)) (2)

where OZ is the structure sheaf of Z. Let HP
X denote the subfunctor of HX induced by the closed

subschemes of X with a fixed Hilbert polynomial P ∈ Q[x]. By the following result stated in our
context, the Hilbert functor is representable by a projective scheme over F2.

Theorem 2.1 ([1]). Let X be a projective scheme over F2. Then for every polynomial P ∈ Q[x],
there exists a projective scheme HilbP (X) over F2, which represents the functor HP

X . Furthermore,
the Hilbert functor HX is represented by the Hilbert scheme

Hilb(X) :=
∐

P∈Q[x]

HilbP (X).

We set Π := k-SAT. Recall that an instance of this problem consists of a satisfiable Boolean
formula in CNF with each clause containing k literals, and by our assumptions its corresponding
polynomial system over F2. Given a homogenized polynomial ϕ, one might consider the closed
subscheme

Proj F2[x0, x1, . . . , xn]/(ϕ(x0, x1, . . . , xn)),

so that each polynomial equation and hence a polynomial system of Π (upon homogenization) iden-
tifies a closed subscheme of Pn

F2
via the corresponding ideal. We thus set X = Pn

F2
in the theorem

above, and refer to the Hilbert polynomial of an instance.

2.3 Reductions and Prime Homogeneous Simple Sub-problems

Let (A,A) and (B,B) be computational problems, and f : (A,A) → (B,B) be a set-theoretic map
such that f(A) ⊆ B and f(A) ⊆ B.

Definition 2.2. A computational procedure αf : (A,A) → (B,B) realizing f , possibly with an
advice string (thus simulating circuits), is called a reduction. We assume that this procedure is
executed by a Turing machine, which starts with an element of (A,A) on its tape, and halts with an
element of (B,B). In this case we disregard the action of the Turing machine on negative instances
and briefly denote αf by αf : A → B.

Definition 2.3. The number of deterministic computational steps performed by a reduction αf is
called the complexity of αf , denoted by τ(αf).

Definition 2.4. τ(f) := τ(A,B) := minαf
τ(αf) is called the complexity of f .

3

Definition 2.5. τ(A) := τ(A,T) is called the complexity of solving A. In this case a reduction
αf : A → T realizing the unique set-theoretic map f : (A,A) → ({True}, {False}) such that
f(A) = True and f(A) = False is said to solve A.

Definition 2.6. Given an instance I of Π, a reduction α : I → T is called a unit reduction.

Example 2.1. Suppose I is {x = 0}. A unit reduction may write 0 on x, outputting {0 = 0},
which is equivalent to True.

Definition 2.7. Given two instances I1 and I2 of Π, a reduction α : I1 → I2 is called a unit
instance reduction.

Example 2.2. Suppose I1 is {x1 = 0, 1− x2 = 0}. A unit instance reduction may replace x1 with
1− x1 and x2 with 1− x2, resulting in another instance I2, which is {1− x1 = 0, x2 = 0}.

Definition 2.8. A reduction is called a unit operation if it is either a unit reduction or a unit
instance reduction.

Definition 2.9. A computational problem defined via a non-empty subset of the instances of Π is
called a sub-problem of Π.

Definition 2.10. A sub-problem Λ of Π is called a simple sub-problem if the instances of Λ have
the same Hilbert polynomial.

Definition 2.11. Instances I1 and I2 of Π are said to be distinct if they satisfy the following:

1. They have distinct solution sets over F2.

2. I1 \ I2 ̸= ∅.

3. I2 \ I1 ̸= ∅.

In this case we also say that I1 is distinct from I2.

Definition 2.12. A sub-problem Λ of Π whose instances are defined via the variable set S =
{x1, . . . , xn}, is said to be homogeneous if all the variables in S appear in each instance of Λ and
the instances of Λ are pair-wise distinct.

Definition 2.13. Let I1 and I3 be instances of Π. Let I2 and I4 be instances of Π or T. Unit
operations α : I1 → I2 and β : I3 → I4 are said to be distinct if they satisfy the following:

1. (I1△I2) \ (I3△I4) ̸= ∅.

2. (I3△I4) \ (I1△I2) ̸= ∅.

In this case we also say that α is distinct from β.

Remark 2.14. By definition, if α and β are distinct unit operations, then α performs a compu-
tational step that does not exist in β, and β performs a computational step that does not exist in
α.

Example 2.3. Consider Example 2.2 with I1 : {x1 = 0, 1− x2 = 0}. The unit instance reduction
permuting the variables x1 and x2 is not distinct from the unit instance reduction in Example 2.2,
as it results in the same instance I2. In particular, (I1△I2) \ (I1△I2) = ∅.

4

Definition 2.15. Given a sub-problem Λ of Π, let T1 be the set of all unit reductions defined via
the instances of Λ, and let T2 be the set of all unit instance reductions defined between pairs of
distinct instances of Λ. Let T = T1 ∪ T2. The sub-problem Λ is said to be prime if the elements of
T are pair-wise distinct.

Example 2.4. Let Λ be defined via the instances

I1 : {x1 = 0, x2 = 0},
I2 : {x1 = 0, 1− x2 = 0},
I3 : {1− x1 = 0, 1− x2 = 0}.

Then Λ is not prime since the unit instance reduction from I1 to I3 contains the unit instance
reductions from I1 to I2 and I2 to I3. In particular, (I1△I2) \ (I1△I3) = ∅.

2.4 The Extended Amplifying Functor

Let Λ be a prime homogeneous simple sub-problem of Π consisting of a set of polynomial systems
{Pi}ℓi=1 defined via the variables x1, . . . , xn. Let ϕij be the homogenized j-th polynomial in the
polynomial system Pi:

ϕij := ϕij(x0, x1, . . . , xn),

for j = 1, . . . , |Pi|. Define

Xi := Proj F2[x0, x1, . . . , xn]/(ϕi1, . . . , ϕi|Pi|), (3)

for i = 1, . . . , ℓ. Let XΛ :=
⋃ℓ

i=1Xi. In words, XΛ contains all the closed subschemes identified by
the instances of Λ. Define the amplifying functor AΛ on Λ as

T 7→ {Y ×F2
T |Y ∈ XΛ, Y ×F2

T → T is flat},

for any scheme T over F2. It is clear by definition that AΛ is a subfunctor of the Hilbert functor,
as it does nothing but considers only a subset of the set of all closed subschemes in defining the
Hilbert functor. Define Hilb(Λ) := HilbP (Λ)(Pn

F2
), where P (Λ) is the Hilbert polynomial associated

to Λ. For a fixed Hilbert polynomial P , HilbP (Pn
F2
) is connected by a result of Hartshorne [2].

Thus, Hilb(Λ) is connected.
Our strategy is via an extension of the amplifying functor from the category of computational

problems to the category of schemes, which we define implicitly via its representation. We call
it the extended amplifying functor. The objects of the source category are certain sub-problems,
and the morphisms are reductions between sub-problems. In particular, the extended amplifying
functor maps a certain sub-problem Λ to a geometric object B(Λ) whose connectivity is crucial.

Recall that in order prove a separation result, one needs to establish a lower bound for any
computational procedure, and a computational procedure might produce any set of instances during
its execution. Nevertheless, we are only interested in the complexity of a specific computational
problem, which encodes all the necessary information for our purpose. This leads us to the following
strategy: We consider the representation of the sub-problem of interest in full detail with the aid of
the Hilbert scheme. Any other instance that might appear during computation however, is mapped
to an object with an irrelevant structure. This is enough to establish the main result. A more
general functor is needed for a full theory of course, which we do not attempt for the time being.

5

Objects of the source category: Let Λ be a prime homogeneous simple sub-problem of Π. Over
all such sub-problems Λ of Π, let κ(Π) denote the maximum value of b(Λ), the number of instances
of Λ. From this point on, fix a single Λ = {I1, . . . , Ir} with κ(Π) = b(Λ) = r. Let Λ′ = {I1, . . . , Ir−1}
for r ≥ 2, and Λ′ = T for r = 1. The objects we consider are Λ, Λ′, Ir, Γ, Λ∪Γ, Λ′ ∪Γ, {Ir}∪Γ, and
T, where Γ is a computational problem consisting of any non-empty set of instances with Λ∩Γ = ∅.

Morphisms of the source category: Let A and B be computational problems. If B ⊆ A, and
f : A → B is a set-theoretic map, we always consider the extension f ′ : A → A. The morphisms
we consider are all the reductions realizing the following maps, which cover all computational
procedures solving Λ, Λ′, and Ir:

Λ → Λ Λ → Γ Λ → T
Λ′ → Λ′ Λ′ → Γ Λ′ → T
Ir → Ir Ir → Γ Ir → T
Γ → Γ Γ → Λ ∪ Γ Γ → T

Λ ∪ Γ → Λ ∪ Γ Λ → Λ ∪ Γ Λ ∪ Γ → T
Λ′ ∪ Γ → Λ′ ∪ Γ Λ′ → Λ′ ∪ Γ Λ′ ∪ Γ → T

{Ir} ∪ Γ → {Ir} ∪ Γ {Ir} → {Ir} ∪ Γ {Ir} ∪ Γ → T

Objects in the image of the extended amplifying functor: We define B(Λ) = Hilb(Λ). Let
pr be the point of B(Λ) representing the instance Ir ∈ Λ. With an abuse of notation, we also
denote the scheme induced by this closed point by pr, and set B(Ir) = pr. We define B(Λ′) to
be the scheme induced by the set of points of B(Λ) excluding pr. For the other objects defined
in the source category as above, B(Γ), B(Λ ∪ Γ), B(Λ′ ∪ Γ), and B({Ir} ∪ Γ) are all defined to be
Hilb(Λ)×Hilb(Λ), where the product is over F2. We define B(T) = Spec F2.

Morphisms in the image of the extended amplifying functor: Recall that given a set-theoretic
map f : A → B, we consider all the reductions realizing f . The functor thus maps all such
reductions to a single algebro-geometric morphism between the schemes representing A and B. In
particular, B(Λ → Λ) is defined to be the identity morphism B(Λ) → B(Λ), which maps each point
of B(Λ) to itself, B(Λ′ → Λ′) is the morphism B(Λ′) → B(Λ′) induced by B(Λ′), and B(Ir → Ir)
is the morphism pr → pr induced by the closed point pr. The other morphisms are defined as
follows. Given a morphism A → B in the source category, if B = T, then B(A → B) is the structure
morphism B(A) → Spec F2. If both A and B contain Γ, then B(A → B) is the identity morphism
Hilb(Λ)×Hilb(Λ) → Hilb(Λ)×Hilb(Λ). If B contains Γ and A = Λ, then B(A → B) is the diagonal
morphism Hilb(Λ) → Hilb(Λ) × Hilb(Λ). If B contains Γ and A = Λ′ or A = Ir, then B(A → B) is
the diagonal morphism induced by Λ′ or pr, respectively. It is clear that these morphisms define a
functor.

3 The Fundamental Lemma of Lower Bounds

Lemma 3.1 (Fundamental Lemma).
τ(Π) ≥ κ(Π).

Proof. Let Λ and Λ′ be the sub-problems defined in the previous section. Since τ(Π) ≥ τ(Λ), it
suffices to show τ(Λ) ≥ r. We argue by induction on r. For r = 1, we clearly have τ(Λ) ≥ 1, since
the complexity of solving a problem other than T is non-zero. For r ≥ 2, assume τ(Λ′) ≥ r − 1.
We want to relate the complexity of the map Λ → T to the complexity of the map Λ′ → T. To this
aim, consider a factorization of the morphism f : B(Λ) → Spec F2 in the image of the extended
amplifying functor as

B(Λ)
h−→ X → Spec F2,

6

such that B(Λ′) ⊆ X and h[B(Λ′)] = B(Λ′). In this case since B(Λ) is connected, h[B(Λ)] must be
connected. This implies by the requirements of the factorization that h[B(Λ)] = B(Λ). In words,
while reducing B(Λ) to Spec F2 via a morphism, which fixes B(Λ′), one has to “go through” B(Λ)
itself. This restriction, provided by the connectedness of B(Λ), is crucial for our argument:

B(Λ)
h−→ B(Λ) → Spec F2.

By our assumption, we also have

B(Λ′)
h−→ B(Λ′) → Spec F2,

where h is uniquely defined in the image of the extended amplifying functor.
A pre-image of the first factorization above might have the following two reduction sequences

applied to Ir.
Λ → Λ → T

α1 : Ir 7→ Ir
α37−→ T

α2 : Ir
α47−→ Ij 7→ T

where j ∈ {1, . . . , r− 1}. We might also have the following two reduction sequences in a pre-image
of the second factorization.

Λ′ → Λ′ → T

β1 : Ij 7→ Ij
β37−→ T

β2 : Ij
β47−→ Ik 7→ T

where k ∈ {1, . . . , r − 1} \ {j}. Note that α3 and β3 are unit reductions, whereas α4 and β4 are
unit instance reductions.

Consider α1 ∪β : Λ → T, where β contains, for each j, either β1 or β2. Note that this reduction
contains a unit reduction α3. Since Λ is prime, α3 is distinct from all β3 and all β4 in the diagram
above. This implies by Remark 2.14 that a reduction containing α1 performs a computational step
that does not exist in β. We thus obtain

τ(α1 ∪ β) ≥ τ(β) + 1. (4)

Consider next α2 ∪ β : Λ → T, where β contains, for each j, either β1 or β2. This reduction
contains a unit instance reduction α4. Since Λ is prime, α4 is distinct from all β3 and all β4
in the diagram above. This implies by Remark 2.14 that a reduction containing α2 performs a
computational step that does not exist in β. We then have

τ(α2 ∪ β) ≥ τ(β) + 1. (5)

The inequalities (4) and (5) together imply τ(Λ) ≥ τ(Λ′)+1 ≥ (r− 1)+1 = r, which completes
the induction and the proof.

4 3-SAT: The Separation of P and NP

Denote by k-SAT(n,m) the problem k-SAT with n variables and m clauses.

Theorem 4.1. For any constant ϵ > 0, there exist infinitely many n ∈ Z+ such that

κ(3-SAT(n, 2n)) ≥ 2(
3
8
−ϵ)n.

7

Proof. We construct a prime homogeneous simple sub-problem of 3-SAT with
(

r
r/2

)
· 2r/2 instances,

each having 4r variables and 8r clauses, for r ≥ 1.

The Initial Construction: A Homogeneous Simple Sub-problem Each instance consists
of r blocks. For r = 1, a block of an instance is initially defined via 4 variables x1, x2, x3, x4, and
8 clauses. We first construct 3 instances with the solution sets over F2 consisting of the following
points:

Instance 1
(0, 0, 1, 0)
(1, 0, 0, 0)
(1, 1, 0, 0)

Instance 2
(0, 0, 1, 0)
(0, 1, 0, 0)
(1, 0, 1, 0)

Instance 3
(0, 1, 0, 0)
(0, 1, 1, 0)
(1, 0, 0, 0)

These instances consisting of a single block are shown in Table 1. A block for each instance
can be described by a procedure using the truth table of the variables. Each of the 8 clauses is
introduced one by one to rule out certain assignments over F2 in the tables. We enumerate the
rows of the tables for each instance by an indexing of these clauses in Table 2, Table 3, and Table 4.
The solution sets over F2 are the entries left out by the introduced clauses. We will show below
that the corresponding schemes over F2 have isomorphic cohomology groups with respect to any
coherent sheaf, so that by (1) and (2) the Hilbert polynomials of the instances are the same. In
particular, we show that they are the disjoint union of a closed point and a linear subspace, which
implies the claim.

The first 5 clauses of the instances are common. Clause 1 forces at least one of x1, x2, and x3

Clause Instance 1 Instance 2 Instance 3

1 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3

2 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4

3 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4

4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4

5 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4

6 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x2 ∨ x4

7 x1 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

8 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4

Table 1: The clauses of the 3 instances satisfying Table 2, Table 3, and Table 4

Clause x1 x2 x3 x4 Clause x1 x2 x3 x4
1 0 0 0 0 1 0 0 0

1 0 0 0 1 5 1 0 0 1

0 0 1 0 7 1 0 1 0

2 0 0 1 1 2 1 0 1 1

6 0 1 0 0 1 1 0 0

3 0 1 0 1 3 1 1 0 1

8 0 1 1 0 8 1 1 1 0

4 0 1 1 1 4 1 1 1 1

Table 2: The truth table of a block of Instance 1 with clause-indexing

8

Clause x1 x2 x3 x4 Clause x1 x2 x3 x4
1 0 0 0 0 7 1 0 0 0

1 0 0 0 1 5 1 0 0 1

0 0 1 0 1 0 1 0

2 0 0 1 1 2 1 0 1 1

0 1 0 0 6 1 1 0 0

3 0 1 0 1 3 1 1 0 1

8 0 1 1 0 8 1 1 1 0

4 0 1 1 1 4 1 1 1 1

Table 3: The truth table of a block of Instance 2 with clause-indexing

Clause x1 x2 x3 x4 Clause x1 x2 x3 x4
1 0 0 0 0 1 0 0 0

1 0 0 0 1 5 1 0 0 1

8 0 0 1 0 8 1 0 1 0

2 0 0 1 1 2 1 0 1 1

0 1 0 0 6 1 1 0 0

3 0 1 0 1 3 1 1 0 1

0 1 1 0 7 1 1 1 0

4 0 1 1 1 4 1 1 1 1

Table 4: The truth table of a block of Instance 3 with clause-indexing

to be 1, as it corresponds to
(1− x1)(1− x2)(1− x3) = 0.

Given this, the following 4 clauses make x4 = 0, since x4 ̸= 0 implies x1 = x2 = x3 = 0 by these
clauses. In other words, xi = 1 for any i ∈ {1, 2, 3} implies a contradiction in the following system:

(1− x2)x3 = 0.
x2(1− x3) = 0.

x2x3 = 0.
x1(1− x2) = 0.

Given that x4 = 0 (or more generally x4 ̸= 1), we now examine the last 3 clauses of the instances.

1. Instance 1:
(1− x1)(1− x3) = 0.

x1x3 = 0.
x2x3 = 0.

x1 = 1 ⇒ x3 = 0, x2 ∈ F2.

x2 = 1 ⇒ x1 = 1, x3 = 0.

x3 = 1 ⇒ x1 = 0, x2 = 0.

Thus, the solution set for (x1, x2, x3) is {(0, 0, 1)} ∪ {(1, α, 0)}, where α ∈ F2.

9

2. Instance 2:
x1(1− x3) = 0.

(1− x2)(1− x3) = 0.
x2x3 = 0.

x1 = 1 ⇒ x2 = 0, x3 = 1.

x2 = 1 ⇒ x1 = 0, x3 = 0.

x3 = 1 ⇒ x2 = 0, x1 ∈ F2.

Thus, the solution set for (x1, x2, x3) is {(0, 1, 0)} ∪ {(α, 0, 1)}, where α ∈ F2.

3. Instance 3:
x1x2 = 0.
x1x3 = 0.

(1− x2)x3 = 0.

x1 = 1 ⇒ x2 = 0, x3 = 0.

x2 = 1 ⇒ x1 = 0, x3 ∈ F2.

x3 = 1 ⇒ x1 = 0, x2 = 1.

Thus, the solution set for (x1, x2, x3) is {(1, 0, 0)} ∪ {(0, 1, α)}, where α ∈ F2.

Note that all the 4 variables appear in all the instances. Since the instances are also distinct,
they form a homogeneous simple sub-problem. Assume now the induction hypothesis that there
exists a homogeneous simple sub-problem of size 3r, for some r ≥ 1. In the inductive step, we intro-
duce 4 new variables x4r+1, x4r+2, x4r+3, x4r+4, and 3 new blocks on these variables each consisting
of 8 clauses with the exact form as in Table 1. Appending these blocks to each of the 3r instances of
the induction hypothesis, we obtain 3r+1 instances. The constructed sub-problem is a homogeneous
simple sub-problem. We now describe a procedure to make it into a prime homogeneous simple
sub-problem.

Mixing the Blocks: A Prime Homogeneous Simple Sub-problem For simplicity and
the purpose of providing examples, we describe the procedure for r = 2. The construction is easily
extended to the general case. Suppose that the first block is defined via Instance 1. We perform the
following operation: Replace the literals of Clause 4 except x4 with appropriate literals of variables
belonging to the second block, depending on which instance it is defined via. If the second block
is defined via Instance 1, then Clause 4 becomes (x5 ∨ x7 ∨ x4). If it is defined via Instance 2, it
becomes (x6 ∨ x7 ∨ x4). If it is defined via Instance 3, it becomes (x5 ∨ x6 ∨ x4). In extending
this to the general case, the second block is generalized as the next block to the current one, and
the variables used for replacement are the ones with the first three indices of the next block in
increasing order, respectively corresponding to x5, x6, and x7.

If the first block is defined via Instance 2, the same operations are performed, this time con-
sidering Clause 5. If the first block is defined via Instance 3, we consider Clause 2. All possible
cases are illustrated in Table 5-Table 10, where the interchanged literals are shown in bold. In the
general case, the described operation is also performed for the last block indexed r for which the
next block is defined to be the first block, completing a cycle.

The constructed sub-problem is prime: In mixing the blocks, we force one specific clause
of a block depending on its type to contain variables belonging to the next block in a way distinctive

10

Clause Instance 1 Instance 1

1 x1 ∨ x2 ∨ x3 x5 ∨ x6 ∨ x7

2 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

3 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

4 x5 ∨ x7 ∨ x4 x1 ∨ x3 ∨ x8

5 x1 ∨ x2 ∨ x4 x5 ∨ x6 ∨ x8

6 x1 ∨ x3 ∨ x4 x5 ∨ x7 ∨ x8

7 x1 ∨ x3 ∨ x4 x5 ∨ x7 ∨ x8

8 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

Table 5: Modification to form a prime sub-problem on Instance 1 and Instance 1 blocks

Clause Instance 1 Instance 2

1 x1 ∨ x2 ∨ x3 x5 ∨ x6 ∨ x7

2 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

3 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

4 x6 ∨ x7 ∨ x4 x6 ∨ x7 ∨ x8

5 x1 ∨ x2 ∨ x4 x1 ∨ x3 ∨ x8

6 x1 ∨ x3 ∨ x4 x5 ∨ x7 ∨ x8

7 x1 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

8 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

Table 6: Modification to form a prime sub-problem on Instance 1 and Instance 2 blocks

Clause Instance 1 Instance 3

1 x1 ∨ x2 ∨ x3 x5 ∨ x6 ∨ x7

2 x2 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x8

3 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

4 x5 ∨ x6 ∨ x4 x6 ∨ x7 ∨ x8

5 x1 ∨ x2 ∨ x4 x5 ∨ x6 ∨ x8

6 x1 ∨ x3 ∨ x4 x5 ∨ x7 ∨ x8

7 x1 ∨ x3 ∨ x4 x5 ∨ x7 ∨ x8

8 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

Table 7: Modification to form a prime sub-problem on Instance 1 and Instance 3 blocks

to the type of the next block. In particular, suppose we represent an instance as a sequence of
blocks numbered according to their types. Then any unit instance reduction from the instance 22
to the instance 23 is distinct from a unit instance reduction from the instance 32 to the instance
33. The first operation can in fact be labeled as one from (2, 2)(2, 2) to (2, 3)(3, 2), since a block
is distinguished by itself together with the next block. The second operation is from (3, 2)(2, 3) to
(3, 3)(3, 3), which better indicates that it is distinct from the first one. The same applies to the
general case, where there are arbitrarily many blocks. It is also clear that the unit reductions via

11

Clause Instance 2 Instance 2

1 x1 ∨ x2 ∨ x3 x5 ∨ x6 ∨ x7

2 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

3 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

4 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

5 x6 ∨ x7 ∨ x4 x2 ∨ x3 ∨ x8

6 x1 ∨ x3 ∨ x4 x5 ∨ x6 ∨ x8

7 x2 ∨ x3 ∨ x4 x5 ∨ x7 ∨ x8

8 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

Table 8: Modification to form a prime sub-problem on Instance 2 and Instance 2 blocks

Clause Instance 2 Instance 3

1 x1 ∨ x2 ∨ x3 x5 ∨ x6 ∨ x7

2 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x8

3 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

4 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

5 x5 ∨ x6 ∨ x4 x5 ∨ x6 ∨ x8

6 x1 ∨ x2 ∨ x4 x5 ∨ x7 ∨ x8

7 x1 ∨ x3 ∨ x4 x5 ∨ x7 ∨ x8

8 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

Table 9: Modification to form a prime sub-problem on Instance 2 and Instance 3 blocks

Clause Instance 3 Instance 3

1 x1 ∨ x2 ∨ x3 x5 ∨ x6 ∨ x7

2 x6 ∨ x7 ∨ x4 x2 ∨ x3 ∨ x8

3 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

4 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

5 x1 ∨ x2 ∨ x4 x5 ∨ x6 ∨ x8

6 x1 ∨ x2 ∨ x4 x5 ∨ x7 ∨ x8

7 x1 ∨ x3 ∨ x4 x5 ∨ x7 ∨ x8

8 x2 ∨ x3 ∨ x4 x6 ∨ x7 ∨ x8

Table 10: Modification to form a prime sub-problem on Instance 3 and Instance 3 blocks

the instances are all distinct from the aforementioned unit instance reductions, ensuring that we
have a prime sub-problem.

Selecting a simple sub-problem: We first observe the following for the first block, which
also holds for all the other blocks by the construction. Assume x4 ̸= 0 and x4 ̸= 1. We will show
that this leads to a contradiction, so that x4 ̸= 0 implies x4 = 1. Recall that Equation 1 forces at
least one of x1, x2, and x3 to be 1, which we repeatedly use below. Consider the case in which the

12

first block is defined via Instance 1. By the equations numbered 2, 3, and 5 of the first block:

(1− x2)x3 = 0.
x2(1− x3) = 0.
x1(1− x2) = 0.

x1 = 1 ⇒ x2 = 1, x3 = 1.
x2 = 1 ⇒ x3 = 1, x1 ∈ F2.
x3 = 1 ⇒ x2 = 1, x1 ∈ F2.

Thus, the solution set to these equations is {(α, 1, 1)}, which contradicts the solution set implied
by the last 3 equations of the first block for x4 ̸= 1: {(0, 0, 1)} ∪ {(1, α, 0)}.

Suppose now that the first block is defined via Instance 2. By looking at the equations numbered
2, 3, and 4 of the first block:

(1− x2)x3 = 0.
x2(1− x3) = 0.

x2x3 = 0.

x2 = 1 ⇒ x3 = 0, x3 = 1, contradiction.
x3 = 1 ⇒ x2 = 0, x2 = 1, contradiction.
x2 ̸= 0 ⇒ x3 = 0, x3 = 1, contradiction.
x3 ̸= 0 ⇒ x2 = 0, x2 = 1, contradiction.

Thus, the solution set to these equations is {(1, 0, 0)}, which contradicts the solution set implied
by the last 3 equations of Instance 2 for x4 ̸= 1: {(0, 1, 0)} ∪ {(α, 0, 1)}.

Finally, suppose that the first block is defined via Instance 3. By looking at the equations
numbered 3, 4, and 5 of the first block, we obtain

x2(1− x3) = 0.
x2x3 = 0.

x1(1− x2) = 0.

x1 = 1 ⇒ x2 = 1, x3 = 0, x2 = 0, contradiction.
x2 = 1 ⇒ x3 = 1, x2 = 0, contradiction.
x3 = 1 ⇒ x2 = 0, x1 = 0.

Thus, the solution set to these equations is {(0, 0, 1)}, which contradicts the solution set implied
by the last 3 equations of Instance 3 for x4 ̸= 1: {(1, 0, 0)}∪ {(0, 1, α)}. All these imply that either
x4 = 0 or x4 = 1.

We next observe that the replaced clauses in each block are satisfiable. Assume x4 ̸= 0. If
the second block is defined via Instance 1, x5 ∨ x7 does not contradict any of the terms of the
solution set of Instance 1 for (x5, x6, x7), which is {(0, 0, 1)} ∪ {(1, α, 0)} ∪ {(α, 1, 1)}. Similarly,
if the second block is defined via Instance 2, x6 ∨ x7 does not contradict any of the terms of the
solution set of Instance 2, which is {(1, 0, 0)}∪{(0, 1, 0)}∪{(α, 0, 1)}. If the second block is defined
via Instance 3, x5 ∨x6 does not contradict any of the terms of the solution set of Instance 3, which
is {(0, 0, 1)} ∪ {(1, 0, 0)} ∪ {(0, 1, α)}.

We have already shown that for x4 = 0, the solution sets associated to three different types of
blocks have the same cohomology. Notice that for x4 = 1, the solutions associated to these blocks
are the ones computed in the discussion above. For Instance 1, it is (α, 1, 1, 1). For Instance 2, it is
(1, 0, 0, 1). For Instance 3, it is (0, 0, 1, 1). Thus, the Hilbert polynomials associated to Instance 2
and Instance 3 are the same, whereas Instance 1 differs from them. We consider the following set
of instances with uniform Hilbert polynomial. Select out of all instances having r/2 blocks defined
via Instance 1 and r/2 blocks defined via either Instance 2 or Instance 3, where we assume r is

13

even. The number of such instances is
(

r
r/2

)
· 2r/2. Using the Stirling approximation, we have for

all ϵ > 0 (
r

r/2

)
· 2r/2 > 2(

3
2
−ϵ)r,

as r tends to infinity. Since r = n/4, the proof is completed.

By Theorem 4.1, Lemma 3.1, and the NP-completeness of 3-SAT [5]:

Corollary 4.2. P ̸= NP.

The definition of τ also implies

Corollary 4.3. NP ̸⊆ P/poly.

Furthermore, by the specific lower bound derived for 3-SAT:

Corollary 4.4. The exponential time hypothesis [3] is true against deterministic algorithms.

Finally, this exponential lower bound implies the following by [4].

Corollary 4.5. BPP = P.

5 Final Remarks: Why 2-SAT is Easy

We first note that the base of the exponential function in Theorem 4.1 is 23/8 ≈ 1.296839. In
contrast, the best deterministic algorithm for 3-SAT runs in time O(1.32793n) [6]. We next show
that the strategy developed in the previous section cannot establish a strong lower bound for 2-SAT.
This partially explains, from a technical standpoint, why 3-SAT is hard but 2-SAT is easy. In brief,
the strategy was as follows:

1. Define 3 instances on 4 variables, each via a single block, and forming a homogeneous simple
sub-problem.

2. Introduce n blocks, each with a new set of variables, to attain an exponential number of
instances forming a homogeneous simple sub-problem.

3. Mix the consecutive blocks in a distinctive way depending on their types, so that we have a
prime homogeneous sub-problem. Select a further sub-problem, which is simple.

Let us now try to imitate our strategy for 2-SAT. Consider the two instances given in Table 11.
The first 3 clauses imply that at least one of x1 and x2 is 1, and x3 is 0. These are analogous to the
first 5 clauses of the blocks we have defined for 3-SAT. Suppose we want to fix x1 = 0 in the first
instance so that the last clause is x1 ∨ x3. The solution set of this instance over F2 consists of the

Clause Instance 1 Instance 2

1 x1 ∨ x2 x1 ∨ x2

2 x1 ∨ x3 x1 ∨ x3

3 x2 ∨ x3 x2 ∨ x3

4 x1 ∨ x3 x2 ∨ x3

Table 11: Two instances of 2-SAT forming a homogenous sub-problem

14

single closed point (0, 1, 0), with the Hilbert polynomial 1. For the second instance, we analogously
use x2 ∨x3 as the last clause, which results in the solution set {(1, 0, 0)}. Observe that we can now
relate consecutive blocks via the second and the third clauses to create a prime sub-problem. In
particular, there are two cases for Instance 1 in a prime sub-problem, the first including the clauses
numbered 1, 2, and 4, the second including clauses numbered 1, 3, and 4. The first one corresponds
to the following system:

(1− x1)(1− x2) = 0.
x1x3 = 0.

x1(1− x3) = 0.

The solution set of this system is {(0, 1, α)}, where α ∈ F2. The second one corresponds to the
following system:

(1− x1)(1− x2) = 0.
x2x3 = 0.

x1(1− x3) = 0.

The solution set of this system is {(1, 0, 1), (0, 1, 0)}. Recall the step of the analysis in the previous
section, which ensures that the replaced clauses are satisfiable. In particular to 2-SAT, we should
further check that, for x3 ̸= 0, there is an assignment to the replaced literal (which is one of
x4, x4, x5, or x5) that satisfies the clause. In the first case we have the solution (0, 1) for (x4, x5),
and in the second case we have the solution (1, 0). By the nature of the construction employed, one
of these cases is used for Instance 1, and the other is used for Instance 2, considered for the current
block. Recall also that if the next block is defined via Instance 1, the solution set for (x4, x5)
might be {(0, 1)}, and if the next block is defined via Instance 2, the solution set might be {(1, 0)}.
Thus, the replaced literal must satisfy both elements of the set {(0, 1), (1, 0)}, which is clearly not
possible: In an attempt to construct a prime sub-problem with this approach, no matter which case
we consider and no matter which literal we use for replacement, the satisfiability of the replaced
clause is not guaranteed.

A clause of 2-SAT puts a more stringent requirement on the variables than 3-SAT, resulting
in only one clause that is not common between the instances. Furthermore, there is not enough
“room” in a clause of 2-SAT that would let us consider different variations so as to ensure a prime
sub-problem. In contrast, the freedom of having 4 variables and 3 non-common clauses between
instances in the case of 3-SAT allows us to consider many more combinations, and we were able to
show that one of them leads to a sub-problem that is both homogeneous, prime, and simple.

Acknowledgment We would like to thank Sinan Ünver for informing us about schemes and
morphisms.

References

[1] A. Grothendieck. Fondements de la Géométrie Algébrique [Extraits du Séminaire Bourbaki 1957-
1962], chapter Techniques de construction et théorèmes d’existence en géométrie algébrique. IV.
Les schémas de Hilbert. Secr. Math., 1962.

[2] R. Hartshorne. Connectedness of the Hilbert scheme. Publications Mathématiques de l’IHÉS,
29:5–48, 1966.

[3] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–
375, 2001.

15

[4] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, pages 220–229. ACM, 1997.

[5] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[6] S. Liu. Chain, generalization of covering code, and deterministic algorithm for k-SAT. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, volume
107, pages 88:1–88:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

16

	Introduction
	Computational Problems and the Extended Amplifying Functor
	Computational Problems
	Representability of the Hilbert Functor
	Reductions and Prime Homogeneous Simple Sub-problems
	The Extended Amplifying Functor

	The Fundamental Lemma of Lower Bounds
	3-SAT: The Separation of P and NP
	Final Remarks: Why 2-SAT is Easy

