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Abstract

The classical algorithm of Agrawal, Klein and Ravi [SIAM J. Comput., 24 (1995), pp. 440-
456], stated in the setting of the primal-dual schema by Goemans and Williamson [SIAM J.
Comput., 24 (1995), pp. 296-317] uses the undirected cut relaxation for the Steiner forest
problem. Its approximation ratio is 2− 1

k , where k is the number of terminal pairs. A variant of
this algorithm more recently proposed by Könemann et al. [SIAM J. Comput., 37 (2008), pp.
1319-1341] is based on the lifted cut relaxation. In this paper, we continue this line of work and
consider the bidirected cut relaxation for the Steiner forest problem, which lends itself to a novel
algorithmic idea yielding the same approximation ratio as the classical algorithm. In doing so,
we introduce an extension of the primal-dual schema in which we run two different phases to
satisfy connectivity requirements in both directions. This reveals more about the combinatorial
structure of the problem. In particular, there are examples on which the classical algorithm fails
to give a good approximation, but the new algorithm finds a near-optimal solution.

1 Introduction

The Steiner forest problem is one of the central problems in the field of approximation algorithms
and network design. It is a natural generalization of the famous Steiner tree problem, and stands
as the starting point for many other generalizations occupying a large fraction of network design
literature. In this problem, one is given an undirected graph G = (V,E), a cost function on the
edges c : E → Q+ and a set of terminal pairs R = {(s1, t1), . . . , (sk, tk)} (we set n := |V | and
m := |E| throughout the paper). The objective is to find a subgraph F of G (which is necessarily
a forest) of minimum cost c(F ) :=

∑
e∈F c(e), which connects every terminal pair.

The Steiner forest problem had a pivotal role in the development of the fundamental techniques
for the field of approximation algorithms, being the main problem of interest for the primal-dual
schema with the idea of growing dual variables synchronously, which was introduced at the begin-
ning of 90s. In particular, the famous approximation algorithm given by [2] (henceforth called AKR),
which has an approximation ratio of 2− 1

k stimulated a series of results for similar problems, and in
general for the area of network design and connectivity problems. This algorithm stated in purely
combinatorial terms was then underlined with the language of the primal-dual schema by [6], who
introduced a more general approach for approximating such problems. Both of these approaches
make use of the undirected cut relaxation (UCR) for the problem, which has an integrality gap of
at least 2− 1

k .
Due to its importance in the field of approximation algorithms, the problem of finding an

algorithm for Steiner forest with a constant approximation ratio better than 2 was stated as one of
the top ten open problems in the area in a recent textbook by [11]. However, since the appearance
of the conference paper by [1], there have been no improved approximation algorithms discovered.
Given that how much we know about its special case, the Steiner tree problem, for which there are
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many different LP relaxations and algorithmic techniques, it is of great interest to see if there are
variations in algorithmic ideas for Steiner forest even if they do not provide significant improvements
in terms of the approximation ratio. In this respect, the fact that there had been a single constant
factor approximation algorithm for the problem for a long time is also intriguing. Along these
lines, a recent attempt by [8] proves a constant factor approximation for a greedy algorithm, a
result which does not make use of an LP relaxation. A work similar in vein to this result followed
by [7] using local search.

This paper is motivated by the question of whether there are new LP relaxations for the Steiner
forest problem, yielding novel algorithmic ideas. More relevant to this question, [9] introduced a
new LP relaxation called the lifted cut relaxation (LCR), motivated by a game-theoretic version of
the problem. They show that LCR is stronger than UCR, and its integrality gap is at least 2− 2

k+1 .
The algorithm they present (henceforth called KLS), which computes a feasible dual with respect
to LCR is a variant of AKR with a modified set of duals to be grown. Its approximation ratio is
also 2 − 1

k , although as the authors point out, the solution it returns is usually costlier than that
of AKR.

The importance of delving more into the combinatorial structure of Steiner forest is also related
to the more general survivable network design problem. Extensions of the usual approach inspired by
AKR has only had limited success so far ([4]; [10]) toward the goal of a 2-approximation primal-dual
algorithm for this problem.

1.1 The results

We introduce a new LP relaxation for the Steiner forest problem, which we call the bidirected cut
relaxation (BCR). This is inspired by the bidirected cut relaxation for the Steiner tree problem
in which one replaces each edge by two arcs in both directions. It is an easy result that BCR is
equivalent to UCR. We would like to stress the fact that our bidirected cut relaxation is not the
same as the one introduced for Steiner tree ([5]; [3]), which can also be extended to the Steiner forest
problem. Indeed, this relaxation has not been well exploited for both of the problems. In contrast,
what we consider can be seen as a bidirected version of the usual undirected cut relaxation, which
we use to construct two paths between pairs in both directions.

Using our bidirected cut relaxation, we provide a new primal-dual algorithm for the Steiner forest
problem with approximation ratio 2 − 1

k . The algorithm is a novel extension of the primal-dual
schema consisting of two phases with synchronous dual growth, one starting from the terminals si,
and the other starting from the terminals ti. We combine the results of these two phases followed by
a standard pruning phase and a final reduction phase on certain subgraphs problematic for BCR.
The proof of the approximation ratio also turns out to be quite different than the usual practice
for primal-dual type algorithms. In the usual approach, the duals collide, and the set of edges
they cover is considered by looking at the degrees of the duals. In our case, a set of duals growing
against each other in different directions is considered.

To underline the differences between AKR and the new algorithm, we provide an example on
which AKR and KLS give an approximation ratio arbitrarily close to 2− 1

k , whereas the new algorithm
finds a near-optimal solution. We also provide a tight example for the new algorithm on which the
approximation ratio is arbitrarily close to 2− 1

k .
Our approach enlarges the (small) set of 2-approximation algorithms for the Steiner forest prob-

lem, which might stimulate new insights on how one can break the barrier of 2, especially in light
of the tight examples we present. More generally, given a problem with a cut-based relaxation
involving terminal pairs, one can consider the bidirected version instead of the usual undirected
one, thus possibly having a two-phase algorithm similar to the one in this paper. How widely
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applicable this is and whether it would yield improved results or new insights on a given problem
is a question of interest.

1.2 Organization

The rest of the paper is structured as follows. In Section 2, we review the undirected cut relaxation
together with AKR exploiting it. Section 3 introduces the bidirected cut relaxation for Steiner forest
and the new primal-dual algorithm for Steiner forest using this relaxation. Section 4 provides the
details of a straightforward implementation. In Section 5, we establish the approximation ratio of
the new algorithm. In Section 6, we give the aforementioned tight examples.

2 The undirected cut relaxation and AKR

Let S be the set of subsets S of V that separate at least one terminal pair in R. In other words,
S ∈ S if and only if there is (s, t) ∈ R satisfying |S ∩ {s, t}| = 1. We call an element in S a
Steiner cut or simply a cut. Let δ(S) denote the set of edges with exactly one endpoint in S. The
undirected cut relaxation of the problem is then as follows:

minimize
∑
e∈E

c(e)xe (UCR)

subject to
∑
e∈δ(S)

xe ≥ 1, ∀S ∈ S,

xe ≥ 0, ∀e ∈ E.

Algorithm 1: AKR(G = (V,E), R, c)

1 y ← 0
2 F ← ∅
3 `← 0

4 // The augmentation phase
5 while not all si-ti pairs are connected in (V, F ) do
6 `← `+ 1
7 Let C be the set of all connected components C of (V, F ) such that |C ∩ {si, ti}| = 1 for some i
8 Increase yC for all C ∈ C uniformly until for some e` ∈ δ(C ′), C ′ ∈ C, c(e`) =

∑
C:e`∈δ(C) yC

9 F ← F ∪ {e`}
10 end

11 // The pruning phase
12 F ′ ← F
13 for j ← ` downto 1 do
14 if F ′ − {ej} is feasible then
15 F ′ ← F ′ − {ej}
16 end

17 end

18 return (F ′, y)
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The dual of this linear program is

maximize
∑
S∈S

yS (UCR-D)

subject to
∑

S∈S:e∈δ(S)

yS ≤ c(e), ∀e ∈ E,

yS ≥ 0, ∀S ∈ S.
AKR synchronously grows dual variables corresponding to the cuts separating any pair. The sets

corresponding to these cuts, which are selected to be minimal with respect to inclusion are called
minimal violated sets. It iteratively improves the feasibility of the primal solution by taking edges
whenever the corresponding constraints become tight. After arriving at a primal feasible solution,
it removes the unnecessary edges, i.e. the edges whose removal do not violate the feasibility, in the
reverse order of their inclusion. The following is a standard result from [6]:

Theorem 1 ([6]). If F ′ and y are the set of edges and the dual variables returned by AKR, then∑
e∈F ′

c(e) ≤
(

2− 2

|A|

)
·
∑
S⊆V

yS ≤
(

2− 1

k

)
·
∑
S⊆V

yS ,

where A is maximum number of minimal violated sets during the algorithm.

3 The bidirected cut relaxation and the new primal-dual algo-
rithm

We first replace each edge e = {u, v} ∈ V by two directed arcs (u, v) and (v, u) each with cost
1
2c(e). For a given cut S ⊆ V , we define δ+(S) = {(u, v) ∈ E|u ∈ S, v /∈ S}, i.e. the set of arcs
emanating from S. As usual, we set S be the set of cuts that separate at least one terminal pair:
S ∈ S if and only if there is (s, t) ∈ R satisfying |S ∩{s, t}| = 1. Then, the following is a relaxation
for the Steiner forest problem.

minimize
1

2

∑
e∈E

c(e)xe (BCR)

subject to
∑

e∈δ+(S)

xe ≥ 1, ∀S ∈ S,

xe ≥ 0, ∀e ∈ E.
It is a straightforward result that (BCR) is equivalent to (UCR), i.e. they can be converted to each
other with equal objective values by assigning appropriate values to the edges/arcs. In particular,
for converting (BCR) to (UCR), the value of an undirected edge is assigned to the corresponding
directed arcs. From (BCR) to (UCR), we assign the average of the values of the arcs in both
directions to the corresponding undirected edge. Thus, the integrality gap of (BCR) is also 2− 1

k .
Let us now write the dual of the linear program (BCR).

maximize
∑
S∈S

yS (BCR-D)

subject to
∑

S:e∈δ+(S)

yS ≤
1

2
c(e), ∀e ∈ E,

yS ≥ 0, ∀S ∈ S.
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Similar to AKR, the new algorithm is also based on the primal-dual schema and growing dual
variables in a synchronized fashion. However, since the underlying graph is a bidirected graph, the
algorithm tries to satisfy the constraints of the primal program (BCR) by constructing a solution in
both directions. This requires two distinct phases for the selection of arcs. In total, the algorithm
consists of four phases to produce a feasible solution. In the first phase, we grow the dual variables
starting from the terminals si, and continue the usual process of including arcs that go tight until
there are directed paths from each si to ti. Note that this does not necessarily make a feasible
solution as some arcs might only be taken in one direction. The solution constructed in the first
phase is an input to the second phase in which we apply the same procedure, but this time starting
to grow the dual variables from the terminals ti. We continue until there are directed paths from
each ti to si. By definition, the solution constructed in the first two phases contains bidirected
paths between each terminal pair.

As in the case of AKR, the set of dual variables that are grown at a particular phase in the
new algorithm must naturally satisfy certain properties. Given a cut S (synonymously a dual)
determined by a set of vertices, an already selected set of edges F , we say that S is a minimal
violated set if there is at least one (s, t) ∈ R such that |S ∩ {s, t}| = 1, |δ+(S) ∩ F | = 0, and S
is minimal with respect to inclusion. Note that the implications of these conditions are different
from those of AKR based on the undirected cut relaxation. In that case, one can simply take the
connected components S of (V, F ) satisfying the property that |S ∩{s, t}| = 1 for some (s, t) which
correspond to minimal violated sets. However, determining the minimal violated sets is not easy
in our case since the underlying graph is directed. In particular, the minimal violated sets in the
new algorithm are not necessarily disjoint (See the leftmost picture in Figure 2). We also make the
distinction between the two different phases of the algorithm and say that a set S satisfying the
usual conditions stated above is an s-minimal violated set if in addition it contains at least one si
but not ti for some valid i. In this case, we say that the corresponding dual originates from si.
Similarly, we say that it is a t-minimal violated set if it contains at least one ti but not si, and
we say that the corresponding dual originates from ti. With this terminology, we are interested in
growing the s-minimal violated sets in the first phase, and the t-minimal violated sets in the second
phase.

The third phase which we call the pruning phase considers the arcs in the reverse order of their
inclusion and discards an arc unless its exclusion violates the feasibility. The order is determined
by the inclusion of the arcs in the first augmentation phase followed by the second augmentation
phase. The arcs selected in both directions and which remain after this phase make the set F 1.
These are in the final solution. At the end of the phase, we have the set of arcs F ′ which are only
selected in one direction.

The effect of the pruning phase of the new algorithm is quite different than that of AKR. In our
case, it may not be clear which edges of the original input graph we should select even though the
result is feasible. An example is given in Figure 1 with the set of arcs shown in F 1∪F ′, the feasible
solution by the end of the pruning phase. The nontrivial duals grown are also shown in dashed
lines. To see that we might have such an instance, note that there are two dual variables running
on the arc with cost 1/2 + ε, one on the t1-side and the other on the t2-side. This results in the
inclusion of that arc before the arcs of cost 1 are taken. In contrast, the arcs of cost 1 are included
in the first phase before the relevant dual covers the arcs of cost 1/2 + ε and 1/2. The last phase
is run as a final remedy for this situation.

In order to state the fourth phase, we need to consider a specific meaning for the growth of duals
in the algorithm. A useful intuition for the type of primal-dual approach we utilize is to consider
the growth of the duals in each iteration as a continuous process over time. Considering an arc
along which a dual grows as a line segment, within a period of time ε > 0, the dual is considered to
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Algorithm 2: Bidirected-Primal-Dual(G = (V,E), R, c)

1 // Initialization
2 y ← 0
3 F ← ∅
4 `← 0

5 // The first augmentation phase
6 while there are terminal pairs in R not connected by a directed si-ti path in (V, F ) do
7 `← `+ 1
8 Let C be the set of all minimal sets C (w.r.t. inclusion) such that |δ+(C) ∩ F | = 0, and si ∈ C,

but ti /∈ C for some i
9 Increase yC for all C ∈ C uniformly until for some e` ∈ δ+(C ′), C ′ ∈ C, c(e`) =

∑
S:e`∈δ+(C) yC

10 F ← F ∪ {e`}
11 end

12 // The second augmentation phase
13 while there are terminal pairs in R not connected by a directed ti-si path in (V, F ) do
14 `← `+ 1
15 Let C be the set of all minimal sets C (w.r.t. inclusion) such that |δ+(C) ∩ F | = 0, and ti ∈ C,

but si /∈ C for some i
16 Increase yC for all C ∈ C uniformly until for some e` ∈ δ+(C ′), C ′ ∈ C, c(e`) =

∑
S:e`∈δ+(C) yC

17 F ← F ∪ {e`}
18 end

19 // The pruning phase
20 F ′ ← F
21 for j ← ` downto 1 do
22 if F ′ − {ej} is feasible then
23 F ′ ← F ′ − {ej}
24 end

25 end
26 F 1 ← {(u, v) ∈ F ′|(v, u) ∈ F ′}
27 F ′ ← F ′ − F 1

28 // The reduction phase
29 F 2 ← ∅
30 Let {(s′i, t′i)} be the set of pairs such that there are disjoint bidirected paths between s′i and t′i in F ′

AND at least one of the following holds for v ∈ {s′i, t′i}:
31 (1) v is adjacent to some edge in F 1

32 (2) v ∈ {si, ti} for some i ∈ {1, . . . , k}
33 for all pairs (s′i, t

′
i) do

34 Let Ps be the directed path s′i − t′i
35 Let Pt be the directed path t′i − s′i
36 P ← arg minP∈{Ps,Pt} τ(P )
37 Double the arcs in P by adding the ones in reverse direction
38 F 2 ← F 2 ∪ P
39 end

40 F 3 ← F 1 ∪ F 2

41 return (F 3, y)
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Figure 1: An example on which the pruning phase does not lead to a valid solution

“cover” a cost of ε of the arc, starting from the already covered part and continuously extending.
An arc of unit length might go tight after half a unit of time if there are two duals growing along
it. Accordingly, given any ε > 0, if there are d duals growing along an arc e in the period of time
ε, we think that the partial cost of εd ≤ 1

2c(e) is covered by the duals in that period. Given two
vertices u and v, and the directed path P = u−v between them, we denote the period of time from
the moment a dual is formed including u to the moment a dual is formed including v by τ(P ).

The fourth phase, which we call the reduction phase determines the set of edges to be selected
based on the information in F ′. We consider all the pairs (s′i, t

′
i) such that there are node disjoint

bidirected paths between s′i and t′i in F ′, together with the requirement that at least one of the
following holds for v ∈ {s′i, t′i}.

� v is adjacent to some edge in F 1 (i.e. the edges induced by the arcs taken in both directions);

� v ∈ {si, ti} for some i (i.e. the original set of pairs).

These are precisely the endpoints of the subgraphs that we seek a valid solution on. The algorithm
considers both of the directed paths between such pairs and takes the path with a smaller τ value,
i.e. the path which goes tight in a shorter period of time. It doubles the selected arcs by taking
them in both directions and includes them into the solution F 2, which is feasible by definition. The
final solution is the union of F 1 and F 2.

To give an example of the last phase, we consider again the graph given in Figure 1. F ′ at
the end of the pruning phase consists of the arcs forming the disjoint directed paths between
the intermediate vertices. Note that there are two duals of the second phase growing along the
arc of cost 1/2 + ε. The time to cover the arcs directed from the t-side to the s-side is then
1/2 + 1

2(1/2 + ε) = 3/4 + ε/2. The time to cover the arcs of cost 1 directed from the s-side to the
t-side on the other hand is 1 since there is a single dual growing in the first phase. So the arcs of
cost 1/2 and 1/2 + ε are taken by the reduction phase.

4 Implementation details

We will give in this section a straightforward implementation of the algorithm. There may be faster
and more compact implementations, which we leave as an open problem.

During the course of the algorithm, we explicitly store all the nodes in a given minimal violated
set. Initially in both the first phase and the second phase, there are k such lists and each list
contains a single terminal representing a minimal violated set. By the execution of the algorithm,
this number is non-increasing. Consequently, we have at most k minimal violated sets at any time
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Figure 2: An example of a merging

in the algorithm. We describe how to select the next arc and how to update the minimal violated
sets for the first phase of the algorithm. The running times will be identical in the second phase.

In order to find the next tight arc, we keep a priority queue for arcs. The key values of the
arcs are the times at which they will go tight. Initially, all the arcs that are not incident to the
terminals might be set to ∞, and the key values of the immediately accessible arcs are set to their
correct values examining their costs. For each arc, we also keep a list of duals growing on that arc.
This is convenient in updating the key values. The initialization of the priority queue takes O(m)
time. At each iteration of the loop, we extract the minimum from the priority queue and update
all the other arcs in the queue with the information obtained from the new set of minimal violated
sets. This takes at most O(m log n) time since we consider at most m arcs to update. In practice,
this number might be much smaller.

Updating the minimal violated sets is the most expensive part of the algorithm. Upon inclusion
of the arc in the current iteration, we update the list of nodes in the sets by performing a standard
graph traversal procedure such as BFS, which takes time O((m+ n)k) = O(mk). Notice that not
all of these sets might be minimally violated, i.e. there might be a set which is a proper subset of
another. Initially declare all the sets active, i.e. consider them as minimal violated sets. In order to
determine which one of these are actual minimal violated sets, we perform the following operation
starting from the smallest cardinality set (assume that the lists keep their sizes). Compare the
elements in the set with all the other sets, and if another set turns out to be a strict superset of this
set, declare the larger set inactive, i.e. not a minimal violated set. Comparing sets can be performed
in expected time O(n) by hashing the values of one set and looping over the second set to see if
they contain the same elements. Hence, for a single set, we spend O(nk) time in expectation. The
total time requirement for this operation is then O(nk2). If the two sets compared are identical, we
merge them into a new minimal violated set and declare it active (See Figure 2 for an example of
this procedure and merging). The number of iterations of the main loop of the algorithm is at most
O(n). So the execution of the whole loop takes time O(mn log n+mnk + n2k2) in expectation.

In order to implement the pruning phase, we iterate over the arcs in F ′. For each such arc,
we check for each terminal pair if they are still connected even if the arc is discarded. This takes
time O((m + n)k = O(mk) with a standard graph traversal algorithm. Since there are at most
O(n) arcs to consider, the total running time is then O(mnk). The reduction phase amounts to
re-executing the algorithm on a subgraph with an extra bookkeeping of times. Its running time is
absorbed by that of the whole algorithm. Thus, the algorithm can overall be implemented in time
O(mn log n+mnk + n2k2).

The merging of minimal violated sets is more difficult in the new algorithm compared to AKR

since they do not necessarily merge even if they reach a common vertex. However, merging of
minimal violated sets can occur during the algorithm, particularly when the algorithm takes some
arcs in both directions. This is illustrated in Figure 2. The dual growing from s1 takes the
arc e1 in forward direction, which we denote by e+1 . The list of nodes representing this dual
then becomes S1 = {s1, v1}. The dual growing from s2 takes the arcs e+2 and e+3 , making its
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node list S2 = {s2, v1, v2}. When S1 continues to grow to take e−2 , its node list is updated to
S1 = {s1, v1, s2, v2}, the set of nodes reachable from s1. However, this cannot be a minimal
violated set as S2 is a proper subset of this list. As a result, the only minimal violated set in this
iteration is S2 = {s2, v1, v2}. After some time, S2 takes e−1 and adds s1 to its node list. At this
time, the algorithm realizes that S1 and S2 are the same, i.e. {s1, s2, v1, v2}, and merges them to
a new minimal violated set.

5 Proof of the approximation ratio

Recall that, given any time, one can see the set of duals and their positions as a snapshot of the
algorithm. In the following discussion proving Propositions 2-4 and Lemmas 5-10, we refer the
behavior of duals in an infinitesimal amount of time in which the snapshot remains the same.

With an abuse of notation, we denote by F 3 the set of undirected edges induced by the solution
when we consider it as a subset of the original input graph. Given an iteration of the first phase
and a dual Cs, we will consider the set of edges ∆(Cs) ∩ F 3, where ∆(Cs) denote the undirected
set of edges induced by δ+(Cs). We make the same definitions for a dual Ct grown in an iteration
of the second phase. Throughout this section, we say that duals grow along edges, rather than
arcs. This is for simplicity of discussion as we usually consider duals growing along the two arcs
representing the same edge.

Given an undirected edge e = {u, v} ∈ F 3, we consider e as a line segment defining an interval
[u = 0, v = 1

2c(e)]. A single dual Ct growing on e− = (v, u) (from v to u) is considered to be grown
against a single dual Cs growing on e+ = (u, v) (from u to v) if there is an interval [a, b] ⊆ [u, v]
such that both Cs and Ct grow on this interval. Given a dual Cs grown in the first phase of the
algorithm, the set of all duals grown against Cs on e for all e ∈ ∆(Cs) ∩ F 3 is called the set of
duals grown against Cs. We make similar definitions for a dual Ct growing in an iteration of the
second phase. Note that if e ∈ F 1, it is possible that a dual grown against Cs belongs to the set
of duals grown in the first phase. This happens, for instance, when two s-terminals are closer to
each other than any other terminals. Similarly, a dual grown against Ct might have grown in the
second phase.

There may be multiple duals growing against each other on an edge. Accordingly, we make the
following refinement over the definition above. Consider the case where a set of duals {Ct1 , . . . , Ctβ}
is grown against {Cs1 , . . . , Csα} on an edge e within a period of time ε. We define the graph of
duals on the edge e as a single edge between two vertices. One of the vertices Cs corresponds to
the set {Cs1 , . . . , Csα}, and is assigned a growth speed of α. The other vertex Ct represents the set
{Ct1 , . . . , Ctβ} with a growth speed of β. We will later generalize the notion of graph of duals.

The proof of the performance ratio relies on the properties of the set of duals grown against
each other. First, we make sure that there always exists a dual grown against another one.

Proposition 2. (a) If e+ = (u, v) ∈ δ+(Cs)∩ F 1 for some Cs grown in the first phase, then there
is a dual grown against Cs on e = {u, v}.

(b) If e− = (v, u) ∈ δ+(Ct) ∩ F 1 for some Ct grown in the second phase, then there is a dual
grown against Ct on e = {u, v}.
Proof. The first part of the statement holds by the definition of the algorithm since e− = (v, u) ∈ F 1

is included into the solution either in the first phase or in the second phase. The second part is
symmetric to the first one.

Proposition 2 does not hold for the edges in F 2 since the edges in the source graph F ′ are not
selected in both directions. We thus properly define a new set of duals growing against each other
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on F 2, first considering a single edge. Let P+ = s′ − t′ and P− = t′ − s′ be the disjoint paths
between a pair (s′, t′) considered in the reduction phase of the algorithm. Assume without loss
of generality that τ(P+) ≤ τ(P−), i.e. P+ with doubled edges is selected by the algorithm. Let
e+ = (u, v) ∈ P+ be any edge selected via the duals grown in the first phase. Taking e as a line
segment [u, v], let the set of duals grown along some [a, b] ⊆ [u, v] be {Cs1 , . . . , Csα} such that they
originate from s′1, . . . , s

′
α, respectively, and e+ is taken by the reduction phase between s′j and t′j

for all 1 ≤ j ≤ α. Note that there exists at least one such j by definition. We create a set of α new
duals, namely {Ct1, . . . , Ctα} each growing against Csj along the interval [a, b].

Consider now defining a new set of duals described as above for all pairs (s′i, t
′
i) connected by

a path P+
i on which we select an edge e+i and take an interval covered within a period of time ε.

We consider all these duals y′S for F 2 in the rest of our discussion, unless we explicitly mention the
duals yS computed by the algorithm. So, considering y′S , we have

Proposition 3. (a) If e+ = (u, v) ∈ δ+(Cs)∩ F 2 for some Cs grown in the first phase, then there
is a dual grown against Cs on e = {u, v}.

(b) If e− = (v, u) ∈ δ+(Cs) ∩ F 2 for some Ct grown in the second phase, then there is a dual
grown against Ct on e = {u, v}.

The edges in F 2 are now tight with respect to y′S , i.e. their total cost is exactly covered by the
duals in y′S . Let α be the number of new duals defined on an interval covered within a period of
time ε, as described above. Each new dual covers a cost of ε. This cost is compensated by one
of the actual duals grown by the algorithm from some t′j to s′j , particularly by covering the same

portion of the cost of an edge on the path t′j − s′j . Indeed, since e+i is taken by the algorithm on

which Csj grows, for the paths P+
j = s′j − t′j and P−j = t′j − s′j , we have τ(P+

j ) ≤ τ(P−j ), and such
a dual always exists. In particular, this implies

Proposition 4. For every new set of α duals in y′S defined on an interval in F 2, each with value
ε, there is a distinct dual in yS of value ε computed by the algorithm.

The following two lemmas use Proposition 2 and Proposition 3 as premises.

Lemma 5. Given a dual Cs growing in an iteration of the first phase, let Ct be the set of duals
grown against Cs. Then, for any Ct ∈ Ct,

|∆(Cs) ∩∆(Ct) ∩ F 3| = 1.

Proof. If |∆(Cs)∩F 3| = 1, there is nothing to prove. Thus, assume |∆(Cs)∩F 3| > 1, and assume
further for a contradiction that for some Ct ∈ Ct, we have |∆(Cs) ∩∆(Ct) ∩ F 3| > 1. Let {v1, w1}
and {v2, w2} be two of the edges on which both Cs and Ct grow with v1, v2 ∈ Cs, w1, w2 ∈ Ct.

If Ct has grown in the second phase, observe that there is an index i such that si ∈ Cs and
ti ∈ Ct. There is also an index j such that sj ∈ Cs and tj ∈ Ct. Otherwise, one of {v1, w1} and
{v2, w2} would be redundant, resulting in a deletion in the pruning phase. Thus, we may assume
without loss of generality that {v1, w1} is on the path between si and ti, {v2, w2} is on the path
between sj and tj . We further observe that there must be a bidirected path between si and sj
in F`. Otherwise, it would contradict the minimality of Cs. Similarly, there is a bidirected path
between ti and tj . The existence of all these paths implies that there is a cycle in F 3, which is a
contradiction (See Figure 3 for an illustration, where the cycle contains both of the terminal pairs).

If Ct has grown in the first phase, then there are si ∈ Cs and sj1 , sj2 ∈ Ct. We may assume
that {v1, w1} is on the path between si and sj1 , {v2, w2} is on the path between si and sj2 . By the
minimality of Ct, there must also be a bidirected path between sj1 and sj2 . This again induces a
cycle, yielding a contradiction.
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Figure 3: An example illustrating the proof of Lemma 5

The symmetric result with a proof identical to that of Lemma 5 except the interchanged roles
of Cs and Ct is as follows.

Lemma 6. Given a dual Ct growing in an iteration of the second phase, let Cs be the set of duals
grown against Ct. Then, for any Cs ∈ Cs,

|∆(Ct) ∩∆(Cs) ∩ F 3| = 1.

The following theorem establishes the approximation ratio of the algorithm by weak duality.

Theorem 7. If (F 3, y) is the solution returned by the new primal-dual algorithm for the Steiner
forest problem, then

1

2

∑
e∈F 3

c(e) ≤
(

2− 1

k

)
·
∑
S⊆V

yS .

Proof. Since all the edges in F 1 are tight, we have

1

2

∑
e∈F 1

c(e) =
∑
e∈F 1

∑
S:e∈δ+(S)

yS .

The edges in F 2 are also tight with respect to y′S , i.e.

1

2

∑
e∈F 2

c(e) =
∑
e∈F 2

∑
S:e∈δ+(S)

y′S .

Then, we obtain

1

2

∑
e∈F 3

c(e) =
1

2

∑
e∈F 1

c(e) +
1

2

∑
e∈F 2

c(e)

=
∑
e∈F 1

∑
S:e∈δ+(S)

yS +
∑
e∈F 2

∑
S:e∈δ+(S)

y′S .

Thus, it suffices to show∑
e∈F 1

∑
S:e∈δ+(S)

yS +
∑
e∈F 2

∑
S:e∈δ+(S)

y′S ≤
(

2k − 1

k

)
·
∑
S⊆V

yS . (1)

We argue by providing a procedure for covering the edges in F 3 in several steps. We first make
some definitions. Form the graph of duals G1 = (V1, E1) with V1 consisting of all the duals grown
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in the first and the second phase by the algorithm on F 1, and E1 consisting of edges of the form
(Cs, Ct) if Cs and Ct have grown against each other on an edge in T1. Modify this graph by
contracting duals simultaneously grown on an edge into a single dual, and let the growth speed of
this dual be the number of contracted duals. Consider a component T1 of G1 and let its vertices be
C1, . . . , C|T1| with the corresponding growth speeds σ1, . . . , σ|T1|. Let σmax be the largest of these
values with the corresponding vertex Cmax. A single step of the procedure covering some portion of
the edges of T1 is as follows. For all components T1 of G1, consider increasing all the duals defining
Cmax by an ε > 0 together with the increments of the neighboring vertices so that they counter
the portion of the corresponding edge of F 1 in the reverse direction (Recall that we select ε small
enough so that the snapshot does not change). Continuing this process in the breadth-first search
fashion, consider the increments of the vertices of T1 so that all the edges we go over are covered
by the same amount in both directions.

Proposition 8. T1 is a tree.

Proof. Take a maximal tree T in T1. Let the duals in T be C1, . . . , C|T |. Assume for a contradiction
that there is an edge e = (Ci, Cj) of T1, which is not in T . Let P be the path in F 3 between the
terminals Ci and Cj originate from, which is implied by the path between Ci and Cj in T . The
existence of e implies that there is another path P ′ in F 3 between the terminals Ci and Cj originate
from. In particular, the edge in F 3 on which e is defined is distinct from the edges of P by the
definition of the graph of duals. This induces a cycle in F 3, which is a contradiction.

Given C ∈ V1, we define deg1(C) as the graph-theoretic degree of C in G1. It is an immediate
consequence of Lemma 5 and Lemma 6 that

Corollary 9. For C ∈ V1, |∆(C) ∩ F 1| = deg1(C).

We now make the analogous definitions for F 2. Form the graph of duals G2 = (V2, E2) with V2
consisting of the duals y′S defined on F 2, and E2 consisting of edges of the form (Cs, Ct) if Cs and
Ct have grown against each other on an edge in F 2. Note that in this graph, the growth speeds
of all the vertices are already 1 by definition. Note also that V1 and V2 might have nonempty
intersection. Thus, we extend the procedure described for G1 above to the vertices in V2 by making
sure that

� their increments are compatible with the ones in V1 in the same step,

� if an increased dual in V2 belongs to the set of duals that we have defined (rather than the
ones actually grown by the algorithm), we increase the values of all such duals defined on the
current interval together with the duals grown against them.

The second condition is enforced to make sure that there is at least one dual computed by the
algorithm corresponding to the duals we have defined in V2, i.e. we can use Proposition 4.

Proposition 10. The edges in V2 do not share any common vertex.

Proof. By the definition of y′S on F 2, there is a distinct dual grown against each dual grown by the
algorithm on an edge. Thus, a dual in y′S cannot be growing against another two duals.

Given C ∈ V2, we define deg2(C) as the graph-theoretic degree of C in G2. Combining Propo-
sition 10 with Lemma 5 and Lemma 6, we have

Corollary 11. For C ∈ V2, |∆(C) ∩ F 2| = deg2(C) = 1.
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After performing a single step of the procedure for all the trees in G1 together with all the
duals in G2 affected by their increments, we continue to cover the uncovered portion of the edges
in F 1 and F 2 in the same fashion by recomputing G1 and G2 on the residual graphs. This process
terminates since the set of duals is finite and we always select ε > 0. We first assume that the
uncovered part of F 1 is nonempty till the end of the procedure, and argue by induction on the
number of steps of the procedure with this assumption. At the beginning of the first step, the
values of all the dual values are 0. Thus, the inequality (1) vacuously holds. Assume that it holds
at the beginning of some step. Let T1 be a tree of G1 with |T1| vertices. By Corollary 9, the degree
of a vertex in G′1 coincides with the number of edges the corresponding dual is incident to in F 1.
Noting that we have |T1| − 1 edges, the amount of increase on the first term of the left hand side
of (1) for T1 is then

εσmax (2(|T1| − 1)) . (2)

Since there are |T1| vertices, the corresponding increase on the right hand side is

εσmax

(
2k − 1

k

)
|T1|. (3)

On the other hand, we have

2(|T1| − 1) =

(
2(|T1| − 1)

|T1|

)
|T1| ≤

(
2(2k − 1)

2k

)
|T1|

=

(
2k − 1

k

)
|T1|,

where the inequality follows from the fact that the number of duals in both phases is at most k,
i.e. |T1| ≤ 2k. Thus, (2) is upper bounded by (3).

Let T2 ⊆ V2 be the set of vertices whose values are increased due to the increments in T1. By
Corollary 11, we have that the degrees of the duals in T2 are all 1, which is the same as the degrees
in F 2. In particular, the number of edges in T2 is |T2|/2. The amount of increase on the second
term of the left hand side of (1) is then

εσmax (|T2|) . (4)

By Proposition 4, there is at least one dual in yS for all the |T2|/2 new duals we have defined in
y′S . Thus, the corresponding increase on the right hand side is at least

εσmax

(
2k − 1

k

)( |T2|
2

+ 1

)
. (5)

Similar to the previous inequality, we obtain

|T2| =
(
|T2|
|T2|
2 + 1

)( |T2|
2

+ 1

)
≤
(

2k

k + 1

)( |T2|
2

+ 1

)
≤
(

2k − 1

k

)( |T2|
2

+ 1

)
,

where the first inequality is due to the fact that |T2| ≤ 2k, and the second inequality follows since
k ≥ 1. Thus, (4) is upper bounded by (5). Overall, the inequality (1) remains valid at the beginning
of the next step of the procedure.
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1− ǫ 1− ǫ 1− ǫ
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1/2 1/2 1/2 1/2 1/2

Figure 4: A tight example for AKR and KLS on which the new algorithm finds a near-optimal
solution

t1

s1 s2 s3 sk−1

sk

t2 t3 tk−1 tk

1 + ǫ

1 1 1 1 1

1 1 1 1

1 + ǫ 1 + ǫ 1 + ǫ

Figure 5: A tight example for the new algorithm

If the uncovered part of F 1 becomes empty, for the rest of the procedure, we appropriately
select at each step some T2 ⊆ V2 such that the edges in F 2 on which the edges in T2 are defined
are simultaneously covered by the algorithm, i.e. T2 is implied by a snapshot of the algorithm.
This ensures that |T2| ≤ 2k and Proposition 4 holds for the duals in T2. Mimicking the procedure
defined for F 1, we increase the values of the duals in T2 by an appropriate ε > 0. Then, given a
step, the amount of increase on the left hand side of (1) is upper bounded by the amount of increase
on the right hand side via the exact same argument given above for T2. Thus, the inequality (1)
holds at the beginning of the next step of the procedure. This completes the induction and hence
the proof.

6 Tight examples

We give a tight example essentially putting a lower bound of 2− 1
k for AKR and KLS in Figure 4 on

which the new algorithm finds a near-optimal solution. For this example, the set of duals grown by
KLS is the same as that of AKR, and they both select all the edges of cost 1− ε before the edges of
cost 1/2 become tight. This makes a total cost of (2k−1)(1−ε). The optimal solution on the other
hand consists of all the edges of cost 1/2 between the pairs of indices from 2 to k and the edge of
cost 1 − ε between s1 and t1, with a total cost of k − ε. In the first phase of the new algorithm,
after the duals cover the edges of cost 1/2 on the s-side, the number of duals grown on the edges
of cost 1/2 on the t-side becomes k. Thus, these edges are also covered within 1/(2k) unit of time
before all the other edges are covered. Same thing happens in the second phase resulting in the
selection of all edges of cost 1/2, making a total cost of k.

A tight example for the new algorithm is given in Figure 5, where the high degree dual is around
sk. In the first phase of the algorithm, the set of k− 1 edges of cost 1 between the set of terminals
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{s1, . . . , sk−1} and sk are covered in both directions since sk also grows. Due to this growth, the
set of k edges between sk and the t-terminals are also selected in forward direction. In the second
phase, these edges are covered in the reverse direction. Thus, the total cost of the solution returned
by the algorithm is 2k−1. The direct edges of cost 1+ε between si and ti for i = 1, . . . , k−1 remain
uncovered throughout the algorithm, which gives an optimal cost of (k−1)(1+ ε)+1 together with
the edge (sk, tk).
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