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Abstract. We introduce a new force-directed model for computing graph layout.
The model bridges the two more popular force directed approaches – the stress
and the electrical-spring models – through thebinary stress cost function, which
is a carefully defined energy function with low descriptive complexity allowing
fast computation via a Barnes-Hut scheme. This allows us to overcome optimiza-
tion pitfalls from which previous methods suffer. In addition, the binary stress
model often offers a unique viewpoint to the graph, which can occasionally add
useful insight to its topology. The model uniformly spreads the nodes within a cir-
cle. This helps in achieving an efficient utilization of the drawing area. Moreover,
the ability to uniformly spread nodes regardless of topology, becomes particu-
larly helpful for graphs with low connectivity, or even with multiple connected
components, where there is not enough structure for defining a readable layout.

1 Introduction

A popular approach to drawing graphs is based on measuring the quality of the layout
through a formal cost function. The layout of the graph is formed by an optimization
algorithm that finds a local minimum of the cost function. This family of algorithms is
known in the graph drawing literature as force-directed algorithms; see, e.g., [2, 14].

Broadly speaking, force-directed cost functions (also known asenergies) define a
desired layout based on either the electric-spring metaphor or on a stress function. Elec-
tric spring functions liken the graph to a physical system where nodes correspond to
electrically charged particles, and edges correspond to springs with zero rest length.
Repulsive electric forces ensure that nodes are well separated, while attractive spring
forces tend to shorten edges and pack closely connected components. Two well known
early versions of this scheme are by Eades [4] and by Fruchterman and Reingold [6].

The stress function relates a nice drawing to good isometry.We have an ideal target
distancedij for every pair of nodesi andj. Given a 2-D layout, where nodei is placed
at pointpi, the stress function is:

∑

i<j

wij (‖pi − pj‖ − dij)
2 (1)

We desire a layout that minimizes this function, thereby best realizing the target dis-
tances. Here, the distancedij is typically the graph-theoretical distance between nodes
i andj. The normalization constantwij equalsd−α

ij . The function (1) appeared earlier
as the stress function in multidimensional scaling [3], where it was applied to graph
drawing [16]. It became a popular graph drawing tool by Kamada and Kawai [13].

Both electric-spring and stress approaches enjoy successful implementations and
offer pleasing layouts to many graphs. In terms of layout appearance, there are distinct
differences between the models, though they are hard to define. As for computational
aspects, the two approaches induce different optimizationprocesses, and each has a
unique advantage. Electric-spring models have the advantage of a lower descriptive



complexity compared to the stress model. This is because allrepulsive forces are uni-
form, whereas attractive forces involve only the|E| pairs of adjacent nodes. On the
other hand, the stress function requires encoding a different target distance for each
node pair. This fundamental difference bounds stress models to quadratic space com-
plexity, while efficient implementations of electric-spring models scale to larger graphs.

On the other hand, the stress function has a mild landscape, which allows utilizing
powerful optimization techniques such as majorization [7]. This way, good minima are
usually achieved regardless of the initial positions. Thisis untrue for the electric-spring
models, which induce an intricate landscape as repulsive forces make the energy go to
infinity when nodes overlap. This causes serious convergence problems even for mod-
erately sized graphs. Past works [9, 11, 19] used sophisticated initialization techniques
through multilevel approximation to overcome these problems.

In this work we introduce the binary-stress model (bStress) for drawing graphs.
Computationally, it is able to merge the advantages of both the electric-spring model
and the stress model. Namely, it offers a low descriptive complexity, thus being scalable
to very large graphs. At the same time, it is similar in its form to the known stress
function, thus enabling the use of the majorization optimization scheme.

As for the quality of the layout, bStress frequently offers aunique perspective to
the graph structure. More than other models, bStress emphasizes uniform spread of the
nodes within a circular drawing area. This may lead to distinctive layouts, which can
serve as useful addition to those produced by other algorithms. Moreover, the empha-
sis on uniform spread is advantageous for graphs with low connectivity, whose struc-
ture alone is not capable of defining a good layout. For example, bStress will naturally
handle graphs with multiple connected components by packing all connected compo-
nents together without requiring any post-processing or special treatment that alterna-
tive methods require. In addition, bStress is suitable for drawing large graphs, not only
because of its improved scalability, but also because it achieves good area utilization
that is important for placing a large number of nodes.

2 Basic notions
We are seeking a layout for a graphG(V = {1, . . . , n}, E), where the position of node
i is pi = (xi, yi). Sometimes, we will refer to the vectorsx, y ∈ R

n, which represent
all x- or y-coordinates, respectively. Notice that while this work addresses the more
common case of 2-D layouts, as usual with force-directed algorithms, extensions to
3-D are naturally possible.

3 The Binary Stress Model
One of the earliest cost functions involved in defining a nicelayout strives to shorten
the squared edge lengths:

H(p) =
∑

〈i,j〉∈E

‖pi − pj‖
2 (2)

However, minimizingH(p) on its own is not sufficient for defining a useful layout, as
nothing prevents all nodes from collapsing at a single point. Thus, Tutte [18] and Hall
[10] augmentedH(p) with simple constraints that prevented the formation of trivial
layouts. Nonetheless, both solutions tend to generate layouts with very uneven sparsity,



where many nodes are overcrowded together. Moreover, Tutte’s and Hall’s methods fail
to produce adequate layouts for graphs of low connectivity such as tree-like graphs.

A hypothetical possible way to makeH(p) working for general graphs, is to lay
out the graph over a grid and then minimizeH(p) while requiring that each node is
positioned at a unique grid cell. This will ensure a uniform spread of the nodes and
prevent nodes from getting too close to each other. However,practical implementation
of such a strategy would be quite complicated. The primary issue is that constraining
positions to grid cells transforms the problem into integeroptimization, which would
be much harder to solve and less scalable.

We avoid integer optimization by adopting a continuous relaxation of the grid layout
strategy. The relaxation is based on the following cost function:

G(p) =
∑

i6=j∈V

(‖pi − pj‖ − 1)2 (3)

This function strives to place all nodes such that their pairwise distances are uniform.
Notice thatG(p) is independent of the graph structure. The minimum ofG(p), as we
have found experimentally, will position the nodes almost uniformly within a circle. For
example, consider Fig. 1, where 1024 nodes are positioned soas to minimizeG(p).

Fig. 1. A Layout of 1024 points that minimizesG(p), by scattering the points within a circle.

The functionG(p) gives us the necessary tool to combat the over dense areas which
are typical to minimization ofH(p). Thus, the binary stress function for computing a
layout of a graph is defined as a linear combination of the two functions:

B(p) =
∑

〈i,j〉∈E

‖pi − pj‖
2 + α

∑

i6=j∈V

(‖pi − pj‖ − 1)2 (4)

The first term relates the layout to the graph structure by ensuring that edges are short,
whereas the second term makes the nodes spread uniformly within a circle. The constant
α (discussed later) controls the balance between the two terms.

Our experience shows that bStress results in useful layoutsfor wide families of
graphs. However, before we dwell into the quality of layoutsgenerated by the bStress
model, we would like to discuss computational aspects.

4 Minimizing the Binary Stress Function

The bStress function (4) is structured as a sum of two stress functions (Eq. (1)), one
with target distances equal to 0, and the other with target distances equal to 1. This is



the reason for choosing the “binary stress” name. Though, the particular value of 1 has
no influence on the resulting layout and any other positive value could be used as well.

As sum of stress functions, the majorization optimization technique can be exploited
to optimizing bStress. Derivation of the stress majorization was given by Gansner et al.
[7]. The process used here is as follows:

Let us define twon×n matrices,L andM . The matrixL is theLaplacian of graph
G, whose associated quadratic form is the sum of squared edge lengthsH(p). The other
matrix,M , is associated with a quadratic form that boundsG(p):

Li,j =







−1 〈i, j〉 ∈ E
∑

k 6=i Lik i = j

0 otherwise
, Mi,j =

{

−1 i 6= j
n − 1 i = j

We also define two vectors,bx, by ∈ R
n, which sum all cosines and sines associated

with each node:

bx
i =

∑

j 6=i

xi − xj

‖(xi, yi) − (xj , yj)‖
, by

i =
∑

j 6=i

yi − yj

‖(xi, yi) − (xj , yj)‖
(5)

Given a current placementp(t) = (x(t), y(t)), an improved placementp(t + 1) =
(x(t+1), y(t+1)), which lowersB(p), is computed by solving the system of equations:

(M + αL)x(t + 1) = bx(t), (M + αL)y(t + 1) = by(t) (6)

Now, let us consider computational complexity. The number of entries in matrixL is
n+|E|. The other matrix –M – is, strictly speaking, dense. However its highly uniform
structure makes it sparse for practical purposes. Typical to the stress majorization pro-
cess is solving (6) by using the conjugate gradient method, which accesses(M +αL) as
a linear operator. Thus, all we need to ensure is that the product(M+αL)x, can be com-
puted efficiently. This is indeed the case, asL is sparse, and(Mx)i = nxi −

∑

j xj ,
which is computed in a constant time after precomputing

∑

j xj . Thus, the product
(M + αL)x, is computed in timeO(n + |E|).

The more challenging operation is the computation of thebx andby vectors of Eq.
(5). This essentially involves computing the angles formedby all node pairs. Here we
follow several recent graph drawing works [9, 11, 17] and usethe Barnes-Hut scheme
[1] for approximating theO(n2) interactions in practicallyO(n log n) time. Thus, we
use a hierarchical geometric decomposition of the drawing area through a quad-tree data
structure. The whole area is assigned to a square (or, a rectangle). Then, each square
is subsequently partitioned into four identical squares, till each node is lying within a
unique leaf square. See Fig. 2 for an illustration.

Fig. 2. A quad-tree hierarchical space decomposition



Computation ofbx
i andby

i is based on a top-bottom traversal of the quad-tree. Letv
be a quad-tree vertex corresponding to squares with side lengthl. We comparel to d
- the distance between nodei and the center of squares. If l/d > θ, then we continue
the traversal recursively with the four children ofv. Otherwise, we halt the traversal
while taking the approximation that all graph nodes lying within squares are at the
same location, and thus can be processed at once. Our defaultvalue forθ is 0.5.

In order to give a flavor of actual running times, we report ourexperience with
graphs of varying sizes in Table 1. Times were measured on a Pentium 4 PC. We let the
majorization process run for 200 iterations, while it was terminated earlier once‖p(t +
1)−p(t)‖/‖p(t)‖ < 0.001. Overall running time is divided among the two components
of the algorithm: (1) solving Eq. (6) through the conjugate gradients iterative process.
(2) Computingbx andby (Eq. (5)) using a Barnes-Hut approximation. The table shows
that the Barnes-Hut approximation is indeed closely following anO(n log n) running
time. The conjugate gradient component takes(n + |E|) time per internal iteration,
but the number of those iterations is less consistent. Sincethe Barnes-Hut calculation
is independent of the number edges, as graphs become denser the conjugate gradient
component becomes more significant (see graphs ‘plustk10’ and ‘gearbox’). Wall-clock
measured running times are not directly comparable across different papers, due to
differences in platforms and code optimization. However, we believe that the ability of
bStress to lay out of 100,000 nodes in a few minutes, places itamong the more efficient
graph drawing techniques.

name nodes edges iterations conjugate gradient Barnes-Hut106× 106×
time/it (sec.) time/it (sec.)C.G. time

|E|+n
B.H. time
n·log n

nopoly 10774 30034 133 0.019 0.182 0.477 4.181
skirt 12598 91961 109 0.082 0.272 0.784 5.264
tuma2 12992 20925 13 0.015 0.238 0.454 4.462
poli large 15575 17468 200 0.106 0.305 3.199 4.666
powersim 15838 36430 200 0.045 0.357 0.869 5.366
ncvxqp9 16554 22493 200 0.023 0.405 0.598 5.797
lpl1 32460 147788 200 0.408 0.763 2.261 5.212
finance256 37376 130560 200 0.192 0.749 1.145 4.385
bcircuit 68902 153328 200 0.328 1.874 1.476 5.621
plustk10 80676 2114154 159 5.169 2.125 2.355 5.367
Ford2 100196 222246 33 0.582 2.230 1.806 4.450
gearbox 107624 3250488 200 5.874 3.317 1.749 6.124
lung2 109460 273646 137 0.272 3.477 0.710 6.304

Table 1. Running time characteristics for graphs of varying sizes. We measure times for the two components of the algorithm:
a conjugate gradient solver, and Barnes-Hut approximation of vectorsbx andby . The last two columns show the dependency
of running time with graph size. Graphs are taken from [12].

5 Results and Implementation Details

The binary stress model is based on unique principles, whichin many cases lead to lay-
outs quite different than those produced by other algorithms. Hence, a key to assessing
the utility of the new model is a qualitative analysis of typical results. In the following
subsections we discuss various aspects of bStress through concrete layout examples.

5.1 Balancing the system

Recall that bStress is parameterized byα, which controls the balance between uniform
spread and structure preservation. Asα grows, the model will prefer shortening edges



over uniformly spreading the nodes. This can significantly influence the appearance of
the layout. For example, in Fig. 3 we show two layouts of the same graph, one computed
with α = 1 and the other withα = 1000. Whenα is low (=1), the model emphasizes
uniform spread, thus nodes are well separated and visible. On the other hand, whenα
is high (=1000), the model cares mostly about exposing the graph’s structure through
shortening edges. Thus, the different hubs that form the graph are clearly shown.

α = 1 α = 1000

Fig. 3. Two bStress layouts of a graph with 1933 nodes and 2043 edges. Settingα = 1 achieves
better separation of nodes and improved area utilization. However, somemay preferα = 1000,
for the better abstraction of the graph’s structure.

Notice thatG(p) =
∑

i6=j∈V (‖pi − pj‖ − 1)2 contains aboutn2/2 terms, whereas
the other part of bStress,H(p) =

∑

〈i,j〉∈E ‖pi − pj‖
2, contains only|E| terms. Thus,

G(p) becomes more and more dominant asn2/|E| grows. This is undesirable, as it
makes the determination of parameterα less stable across varying graphs. To offset
some of this phenomenon, our experience shows that as|E|/n grows, it is beneficial
to overweightH(p) over G(p). In other words, for sparse graphs, there is no much
structure in the graph and it is reasonable to pay much attention to uniform spread.
However, for denser graphs, there is much structure to be captured from the connectivity
information. Combining these considerations, we learnt that a sensible choice toα is
c · n, for some positive constantc. Hence, the bStress model becomes:

B(p) =
∑

〈i,j〉∈E

‖pi − pj‖
2 + c · n

∑

i6=j∈V

(‖pi − pj‖ − 1)2 (7)

Focusing on values ofc is easier than focusing on values ofα. In fact, our exper-
iments show thatc = 1 is a universally reasonable choice, being our default value. In
some cases, better results are obtained with lower values ofc.

There is another implication to the value ofc, beyond layout appearance. We have
found that the majorization optimization process may encounter bad local minima when
c is too low. To avoid this, we first run the algorithm with higher values ofc, and then
use the resulting layout for seeding a process with a lowerc value. That is, a typical run
would start withc=100, and then restart withc=1. Usually, the number of majorization
iterations after restarting the run is relatively low thanks to the improved initialization.



5.2 Drawing trees

Prior adaptation of theH(p) function to drawing graphs [10, 18] could not handle trees
and tree-like graphs adequately. The major issue was the inability to prevent many nodes
from collapsing at the same location, thus resulting in a highly imbalanced layout with
much unused area and a few overcrowded locations. Such an issue does not exist with
bStress, as could be evident from the drawing of a tree-like graph given in Fig. 3. In
fact, as graphs become sparser, results of bStress look increasingly different than those
computed by alternative models such as the aforementioned stress and electric-spring
models. This is because, the lack of sufficient connectivityinformation let the uniform
spread component,G(p), be more dominant in shaping the layout.

As an example, in Fig. 4 we present the drawings of two trees, which are derived
from an Internet map and a BGP connectivity map. Results of bStress are compared to
the results of the stress function. The known stress model seems to be better at exposing
the decomposition of the tree, whereas bStress achieves more uniform node distribution.
The uniform spread achieved by bStress becomes particularly useful when the number
of nodes is large making area utilization a high priority.

5.3 Disconnected graphs
Most force-directed methods cannot directly handle disconnected graphs. For exam-
ple, the stress model requires defining the distance betweeneach two nodes, which is
not naturally defined for disconnected nodes. Likewise, theelectric spring model as-
sumes only repulsive forces among connected components, ultimately pushing them
away from each other till infinity. Certainly, various modifications to those models can
enable working with disconnected graphs. Most notably, each connected component
can be drawn separately, and later a smart packing algorithmsqueezes all components
within the drawing area [5].

Interestingly, bStress handles disconnected graphs exactly the same way it handles
connected graphs. Thus, unlike other methods, it does not require any modification or
postprocessing when addressing disconnectivity. This is thanks to the uniform spread
model (G(p)), which strives for a fairly uniform node distribution, regardless of con-
nectivity. A small artificial example is brought in Fig. 5, where we draw a graph with 11
connected components. As can be seen, bStress could pack allcomponents efficiently
together within a circle, while no two components overlap, and each component is dawn
reasonably. A larger, more realistic example is given in Fig. 6, where we show a graph
consisting of many Internet traces. The graph contains 3743connected components,
which are all packed pretty well within the layout.

5.4 Filling a circle
A notable feature of bStress is packing the graph within a circle. Admittedly, the cir-
cular shape of the layout is not a design goal but rather an outcome of the chosen cost
function. However, filling the interior of the circle is indeed a design goal of the bStress
model. In some cases this can lead to surprisingly looking layouts. For example, some
layouts would be expected to lie on the periphery of a circle.However, bStress will
“insist” on filling the circle with some of the nodes, due to the strict uniform spread re-
quirement. This might look odd at first, but we argue that it has an advantage of enabling
a better distinction between individual nodes.



Internet map (|V |=9227,|E|= 9226)
bStress stress

BGP connectivity (|V |=3487,|E|= 3486)
bStress stress

Fig. 4. Comparing stress to bStress in drawing trees

We demonstrate this in Fig. 7. First simple example is a (topological) circle, which
is twisted in order to spread nodes within the interior. Another example is the finan512
graph, which became a standard example in works aimed at drawing large graphs. Pre-
vious works (e.g., [15, 19]) placed all nodes on or close to the perimeter of a circle.
On the other hand, bStress fills the interior of the circle. This enables a better view of
the local details of this large graph, at the price of an inferior exhibition of symmetries.
At this point, we would like to clarify that while frequentlythe outline of the layout is
circular, this is not always the case; for example consider Fig. 8.



Fig. 5. A graph with 11 connected components (|V |=333,|E|=397)

Fig. 6. An Internet map with 3743 connected components (|V |=33552,|E|=29809). Node colors
indicate some known ISPs.

5.5 Distorting the layout

The uniform spread component,G(p), induces layouts where the periphery is denser
than the central area. This effect can be seen in Fig. 1. Let ustake a polar coordinates
viewpoint, where the origin is the layout center. We observethat nodes are uniformly
spread across different angular coordinates, but less so across different radial coordi-
nates. Thus, we propose the following correction as an optional postprocessing phase.

We denote the layout density (or, sparsity) around nodei by di. This waydi = 0
for the densest possible area, whiledi is large when there is a lot of free area aroundi.
One way to measuredi is to set it to the average distance betweeni and its topk closest



1000-circle (|V |=1000,|E|= 1000) finan512 (|V |=74752,|E|= 261120)

Fig. 7. bStress tends to fill the interior of a circle

nodes in the layout. In our implementation, we compute a relative neighborhood graph
(RNG), and definedi as the average length of edges adjacent toi in the RNG.

We sort all nodes by their radial coordinates, which are distances from the center.
Then, we smooth the computed densities, by averaging densities of nodes with similar
radial coordinates; see Sec. 6 of [8] for a similar procedure. Finally, for each nodei,
which comes immediately after nodej in the sorted order, we modify the gap in radial
coordinates betweeni andj by multiplying it by 1/di. Thus, we shrink gaps in sparse
areas, while widening gaps in dense areas.

We include this distortion in our default settings, as it takes a negligible time, and
occasionally leads to a modest improvement of layout appearance. A simple example is
a square grid, whose layout improves when applying the distortion as shown in Fig. 9.

6 Conclusions

The binary stress model leads to unique graph layouts characterized by uniform distri-
bution of nodes within a circular area. This is particularlybeneficial for large graphs,
where efficient utilization of the drawing area becomes vital. In addition, the model
is capable of producing decent layouts even for graphs with low connectivity, where
scant adjacency information cannot define a useful layout onits own. Computationally,
it combines some of the benefits of both the stress and the electric-spring model, fa-
cilitating a simple, yet effective optimization procedurethat scales well for very large
graphs. We believe that it should coexist as a viable option along more familiar models.
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