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Abstract Given a matrix A ∈ Rm×n (n vectors in m dimensions), and a
positive integer k < n, we consider the problem of selecting k column vectors
from A such that the volume of the parallelepiped they define is maximum
over all possible choices. We prove that there exists δ < 1 and c > 0 such that
this problem is not approximable within 2−ck for k = δn, unless P = NP .
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1 Introduction

Given a matrix A ∈ Rm×n, it is of practical importance to obtain the “signif-
icant information” contained in A. It becomes especially important to have a
compact representation of A when A is large and has low numerical rank, as
is typical of modern data. Thus, in a broad sense, we are interested in concise
representations of matrices. Besides the tremendous practical impact of lin-
ear algebraic algorithms designed to this aim, they also come up in different
theoretical forms and paradigms. Specifically, the formalization of “significant
information” can be done in several ways and to a great extent, it depends on
how a matrix is interpreted.

From a conceptual point of view, rather than interpreting a matrix as a
block of numbers, we view it as a set of vectors (specifically, column vectors)
which are indivisible entities. Thus, the formalization of “significant informa-
tion” is essentially related to finding a subset of columns of the matrix which
satisfies some certain spectral conditions or orthogonality requirements. From
a purely combinatorial perspective, treating vectors as elements of a set, one

Ali Çivril
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can also view subset selection in matrices as a generalization of the usual sub-
set selection problem where the elements contain little or no information. To
give a specific example, the well known Set Cover problem asks for a smallest
cardinality subset of a set system which covers a universal set. Likewise, the
problem we are interested in essentially asks for a small number of column vec-
tors to “cover” the whole matrix. In this paper, we state a measure of quality
for this problem, namely the volume, and we prove an exponential inapprox-
imability result for the problem of selecting a maximum volume sub-matrix of
a matrix.

Several problems in matrix analysis require to construct a more concise
version of a matrix generally performed by a re-ordering of the columns [15],
such that the new smaller matrix is as good a representative of the original as
possible. One of the criteria that defines the quality of a subset of columns of a
matrix is how well-conditioned the sub-matrix that they define is. To motivate
the discussion, consider the set of three vectors{

e1 =

(
1
0

)
, e2 =

(
0
1

)
, u =

(√
1− ε2
ε

)}
,

which are clearly dependent, and any two of which are a basis. Thus any
pair can serve to reconstruct all vectors. Suppose we choose e1, u as the ba-
sis, then e2 = (1/ε)u − (

√
1− ε2/ε)e1, and we have a numerical instability in

this representation as ε → 0. Such problems get more severe as the dimen-
sionality of the space gets large (curse of dimensionality), and it is natural
to ask the representatives to be “as far away from each other as possible”.
From this simple example, we see that two orthogonal vectors will capture
more information about a superset of columns than two that have an acute
angle between each other. Hence, in its generality, this vaguely stated prob-
lem can be stated as finding a subset of columns with the maximum volume
possible or equivalently with the maximum determinant. A similar (but not
equivalent) problem is to find a subset with the maximum smallest singular
value. Indeed, in one of the early works studying Rank Revealing QR (RRQR)
factorizations [21], while discussing different options on how to choose a good
sub-matrix, it was noted that it turns out that “the selection of the sub-matrix
with the maximum smallest singular value suggested in [14] can be replaced
by the selection of a sub-matrix with maximum determinant”, which heuris-
tically proposes to maximize the volume of the sub-matrix instead of using
more complicated functions. Several algorithms have been designed following
this intuition [3,5–7,9,19,21,25]. The optimization problem of finding a max-
imum volume sub-matrix of a matrix was only recently studied by Çivril and
Magdon-Ismail:

Definition 1 [8] Given a matrix A ∈ Rm×n of rank at least k, MAX-VOL is
the problem of finding a sub-matrix C ∈ Rm×k of A such that the volume of the
k dimensional parallelepiped defined by the column vectors in C is maximum
over all possible choices.
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Theorem 2 [8] MAX-VOL is NP-hard. Further, it is NP-hard to approximate
to within 2

√
2/3 + ε for arbitrarily small ε > 0.

Since MAX-VOL is NP-hard, it is natural to ask for an algorithm to ap-
proximate the maximum volume. The first thing one might try is a simple
greedy algorithm for approximating MAX-VOL:

Algorithm 1 Greedy
1: C ← ∅
2: while |C| < k do
3: Select the largest norm vector v ∈ A
4: Remove the projection of v from every element of A
5: C ← C ∪ v
6: end while

The analysis of the approximation ratio of this algorithm and a lower bound
was also provided in [8]. Specifically, let V ol(Gr) be the volume of the column
vectors chosen by Greedy and let V ol(Opt) be the optimum volume. Then, we
have

Theorem 3 [8] V ol(Gr) ≥ 1
k! · V ol(Opt).

Theorem 4 [8] There exists an instance of MAX-VOL for which V ol(Gr) ≤
1

2k−1 (1 − ε) · V ol(Opt) for arbitrarily small ε > 0. Furthermore, this instance
can explicitly be constructed.

Note that there is a gap between the proven approximation ratio and the
lower bound implied by the explicit example. The analysis yielding the ratio
1/k! is essentially a product of k different mutually exclusive analyses related
to each step of the algorithm. However, it is not clear whether the overall
contribution of these different steps to the approximation ratio is actually
better than their products. Indeed, the lower bound of 1/2k−1 pertains to
such a peculiar construction that we have conjectured a 1/2k−1 approxima-
tion ratio for the greedy algorithm. Hence, in general, proving an exponential
inapproximability for this problem is an important step towards characteriz-
ing its approximability properties. It will show that the greedy algorithm is
almost the best one can hope for.

This work takes a step towards this goal and proves exponential inapprox-
imability for MAX-VOL via a gap preserving reduction from the well known
Label-Cover problem using the Parallel Repetition Theorem [26]. In doing so,
we will establish that the greedy algorithm is asymptotically optimal up to a
logarithm in the exponent. Specifically, we prove the following theorem:

Theorem 5 There exists δ < 1 and c > 0 such that the problem MAX-VOL
is not approximable within 2−ck for k = δn, unless P = NP .

Our reduction which can be used to prove inapproximability results for
other matrix approximation problems with different objective functions, may
also be of independent interest.
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1.1 Preliminaries and Notation

We introduce some preliminary notation and definitions. Let a matrix A be
given in column notation as: A = {v1, v2, . . . , vn}. The volume of A, V ol(A)
can be recursively defined as follows: if A contains one column, i.e. A = {v1},
then V ol(A) = ‖v‖2, where ‖ · ‖2 is the Euclidean norm. If A has more than
one column, V ol(A) = ‖v − π(A−{v})(v)‖

2
·V ol(A−{v}) for any v ∈ A, where

πX(v) is the projection of v onto the space spanned by the column vectors of
X. It is well known that π(A−{v})(v) = AvA

+
v v, where Av is the matrix whose

columns are the vectors in A − {v}, and A+
v is the pseudo-inverse of Av (see

for example [15]). Using this recursive expression, we have

V ol(S) = V ol(A) = ‖v1‖2 ·
n−1∏
i=1

‖vi+1 −AiA+
i vi+1‖2

where Ai = {v1 · · · vi} for ≤ i ≤ n− 1.
We observe a simple fact about the “distance” of a vector to a subspace

in the following lemma, which will be useful in the final proof. Given two sets
of vectors P and Q = {q1, . . . , qm}, let d(q, P ) = ‖q − πP (q)‖2 denote the
distance of q ∈ Q to the space spanned by the vectors in P .

Lemma 6 (Union Lemma) V ol(P ∪Q) ≤ V ol(P ) ·
∏n
i=1 d(qi, P ).

Proof We argue by induction on m. For m = 1, Q has one element and
the statement trivially holds. Assume that it is true for n = k where Q =
{q1, . . . , qk}. Then, for any qk+1

V ol(P ∪Q ∪ {qk+1}) = V ol(P ∪Q) · d(qk+1, P ∪Q)

≤(a) V ol(P ∪Q) · d(qk+1, P )

≤(b) V ol(P ) ·
k∏
i=1

d(qi, P ) · d(qk+1, P )

= V ol(P ) ·
k+1∏
i=1

d(qi, P ).

(a) follows because d(q, A ∪B) ≤ d(q, A) for any A, B and (b) follows by the
induction hypothesis.

1.2 Related Work

The concept of volume has been closely related to matrix approximation and
mainly studied from a linear algebraic perspective. There are a few results
revealing the relationship between the volume of a subset of columns of a
matrix and its approximation. In [11], the authors introduced volume sampling
to find low-rank approximation to a matrix where one picks a subset of columns
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with probability proportional to the volume of the simplex they define. In
volume sampling, one picks a subset of columns S of size k with probability

PS =
V ol(S)2∑

T :|T |=k V ol(T )2
,

where the summation in the denominator is over all subsets of size k. This sam-
pling provides an almost tight low-rank approximation of a matrix in Frobenius
norm. Improving this existence result, Deshpande and Vempala [12] provided
an adaptive randomized algorithm for the low-rank approximation problem,
which includes a sub-procedure that repetitively chooses a small number of
columns by approximating volume sampling. This algorithm is essentially a
greedy algorithm and can be regarded as a randomized version of the greedy
algorithm we have analyzed for MAX-VOL [8]. They show that, if P̃S is the
probability that this algorithm chooses a subset of columns S of size k, then

P̃S ≤ k! · PS . (1)

Thus, not only is sampling larger volume columns good, but approximately
sampling columns with large volume can prove useful for matrix approxima-
tion. A natural question is to ask what happens when one finds a set of columns
with the largest volume (deterministic), which is our problem MAX-VOL. Note
that, the last expression (1) is reminiscent of the approximation ratio we have
proved for MAX-VOL in [8], but its analysis relies on a linear algebraic iden-
tity whereas the result in [8] is derived via combinatorial means. MAX-VOL
and volume sampling seem to be related, but they have different character-
istics. MAX-VOL is proven to be intractable by using complexity theoretic
tools, whereas according to a recent result by Deshpande and Rademacher
[10], volume sampling can be exactly implemented in polynomial time. This
work together with [10] reveals the fact that, although one can exactly sam-
ple the columns of a matrix with probability proportional to their volumes,
identifying a subset with the maximum volume is hard.

Goreinov and Tyrtyshnikov [16] provided explicit statements of how MAX-
VOL, in particular, is related to low-rank approximations in the following
theorem:

Theorem 7 [16] Suppose that A is an m× n block matrix of the form

A =

(
A11 A12

A21 A22

)
where A11 is nonsingular, k× k, whose volume is at least µ−1 times the max-
imum volume among all k × k sub-matrices. Then 1

‖A22 −A21A
−1
11 A12‖∞ ≤ (k + 1)µσk+1(A).

1 ‖B‖∞ denotes the maximum modulus of the entries of a matrix B.
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This theorem implies that if one has a good approximation to the maximum
volume k × k sub-matrix, then the rows and columns corresponding to this
sub-matrix can be used to obtain a good approximation to the entire matrix in
the ∞-norm. If σk+1(A) is small for some small k, then this yields a low-rank
approximation to A. [17] also proves a similar result to Theorem 7.

Pan [24] unifies the main approaches developed for finding RRQR factor-
izations by defining the concept of local maximum volume and then gives a
theorem relating it to the quality of approximation.

Definition 8 [24] Let A ∈ Rm×n and C be a sub-matrix of A formed by any
k columns of A. V ol(C)( 6= 0) is said to be local µ-maximum volume in A, if
µV ol(C) ≥ V ol(C ′) for any C ′ that is obtained by replacing one column of C
by a column of A which is not in C.

Theorem 9 [24] For a matrix A ∈ Rn×n, an integer k (1 ≤ k < n) and
µ ≥ 1, let Π ∈ Rn×n be a permutation matrix such that the first k columns of
AΠ is a local µ-maximum in A. Then, for the QR factorization

AΠ = Q

(
R11 R12

0 R22

)
,

we have

σmin(R11) ≥ (1/
√
k(n− k)µ2 + 1)σk(A)

and

σ1(R22) ≤
√
k(n− k)µ2 + 1σk+1(A).

We note that, MAX-VOL asks for a stronger property of the set of vectors
to be chosen, i.e. it asks for a “good” set of vectors in a global sense rather than
only requiring local optimality. Obviously, a solution to MAX-VOL provides
a set of vectors with local maximum volume.

Independently of our work, there are some results in computational geom-
etry which are related to the ability to construct large simplices embedded in
V-polytopes. Essentially, the problem we consider is a more general version of
finding a large simplex in a V-polytope, where the vertices of the polytope are
the column vectors. The results in this area are similar to ours in spirit but
using different techniques [18,22,23]. The most relevant work to ours is that
of Koutis [22], which shows exponential inapproximability for finding a large
simplex in a V-polytope. Koutis provides a reduction from set packing using
an inapproximability result of [20], whereas our reduction is directly from the
Label Cover problem.

2 The Label-Cover Problem

Our reduction will be from the Label Cover problem. Label Cover combina-
torially captures the expressive power of a 2-prover 1-round proof system for
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the problem Max-3SAT(5). Specifically, there exists a reduction from Max-
3SAT(5) to Label Cover, so that using the well known parallel repetition tech-
nique for the specified proof system yields a new k-fold Label Cover instance.
For simplicity, we prefer to state our reduction from Label Cover and for the
sake of completeness, we provide a canonical reduction from Max-3SAT(5) to
Label Cover.

Max-3SAT(5) is defined as follows: Given a set of 5n/3 variables and n
clauses in conjunctive normal form where each clause contains three distinct
variables and each variable appears in exactly five clauses, find an assignment
of variables such that it maximizes the fraction of satisfied clauses. The fol-
lowing result is well known [1,2]:

Theorem 10 There is a constant ε > 0, such that it is NP-hard to distinguish
between the instances of Max-3SAT(5) having optimal value 1 and optimal
value at most (1− ε).

Although this result was proved for general 3CNF formulas, without the
requirement that each variable appears exactly 5 times, there is a standard
reduction from Max-3SAT to Max-3SAT(5) [13], which only results in a dif-
ference in the constant ε.

A Label Cover instance L is defined as follows:

L = (G(V,W,E), (ΣV , ΣW ), Π)

where

– G(V,W,E) is a regular bipartite graph with vertex sets V and W , and the
edge set E.

– ΣV and ΣW are the label sets associated with V and W , respectively.

– Π is the collection of constraints on the edge set, where the constraint on
an edge e is defined as a function Πe : ΣV → ΣW .

A labeling is an assignment to the vertices of the graph, σ : {V → ΣV }∪{W →
ΣW }. It is said to satisfy an edge e = (v, w) if Πe(σ(v)) = σ(w). The Label
Cover problem asks for an assignment σ such that the fraction of the satisfied
edges is maximum.

A standard reduction from Max-3SAT(5) to Label Cover reveals that

Theorem 11 There is a constant ε′ > 0, such that it is NP-hard to distinguish
between the instances of Label Cover having optimal value 1 and optimal value
at most (1− ε′).

In order to amplify the gap, one can define a new Label Cover instance
for which the vertex set is essentially a set Cartesian product of the original
one. This instance, as follows, captures a standard 2-prover 1-round protocol
with parallel repetition applied ` times. We first note that for a given set
S = {s1, . . . , sn}, S` consists of all `-tuples of the form (si1 , . . . , si`) where
sij ∈ S and ij runs over {1, . . . , n} for ` ≥ j ≥ 1. Given the original Label
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Cover instance L = (G(V,W,E), (ΣV , ΣW ), Π) reduced from Max-3SAT(5),
let

L` = (G`(V `,W `, E`), Σ`
V , Σ

`
W , Π

`),

where V `, W `, Σ`
V and Σ`

W are the ` times Cartesian products of the sets V ,
W , ΣV and ΣW , respectively as defined above. Let

– E` consist of all edges of the form e = (v, w) where v = (vi1 , . . . , vi`) and
w = (wi1 , . . . , wi`) satisfying (vij , wij ) ∈ E and for all ` ≥ j ≥ 1.

– Π` be the collection of constraints on the edge set E`. The constraint on an
edge e = (v, w) where v = (vi1 , . . . , vi`) and w = (wi1 , . . . , wi`) is a function
Π`
e : Σ`

V → Σ`
W which is essentially an `-tuple constraint (Π`

e1 , . . . Π
`
e`

),

where Π`
ej = Π(vij ,wij )

for ` ≥ j ≥ 1.

A labeling σ of the vertices V ` and W ` is said to satisfy an edge e = (v, w)
where v = (vi1 , . . . , vi`) and w = (wi1 , . . . , wi`), if Π`

e(σ(v)) = σ(w). Note that
this requirement is equal to Π(vij ,wij )

(σ(vij )) = σ(wij ) for all ` ≥ j ≥ 1. It is

easy to see that, in this new Label Cover instance, |V | = (5n/3)`, |W | = n`,
|E| = (5n)`, |Σ`

V | = 7` and |Σ`
W | = 2`; the degrees of the vertices in V and

W is 3` and 5`, respectively. The following theorem is a well known result by
Raz [26]:

Theorem 12 There is an absolute constant α > 0, such that it is NP-hard to
distinguish between the case that OPT (L`) = 1 and OPT (L`) ≤ 2−α`.

3 Exponential Inapproximability of MAX-VOL

3.1 The Basic Gadget

At the heart of our analysis is a set of vectors with a special property. We will
use a set of vectors (composed of binary entries for simplicity of construction)
such that any two of them have large dot-product. We will also require that
the dot product of a vector and the binary complement of any other vector
is large. More specifically, we need these dot products be proportional to the
Euclidean norms squared of the vectors.

Given a vector v = (v1 . . . vm) where vi ∈ {0, 1} for m ≥ i ≥ 1, we denote
the binary complement of v by v = (v1 . . . vm) where vi = 1 if vi = 0, and
vi = 0 otherwise. We begin with the following lemma:

Lemma 13 For m ≥ 2, there exists a set of vectors B = {b1, . . . , b2m−1} of
dimension 2m with binary entries such that the following three conditions hold:

1. ‖bi‖2 = 2(m−1)/2 for 2m− 1 ≥ i ≥ 1

2. bi · bj = 2m−2 for 2m− 1 ≥ i > j ≥ 1.

3. bi · bj = 2m−2 for 2m− 1 ≥ i > j ≥ 1.
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Proof Consider the Hadamard matrix H of dimension 2m × 2m with entries
−1 and 1, constructed recursively by Sylvester’s method. Let B be the (2m −
1)× 2m matrix consisting of the rows of H for which we replace −1’s with 0’s,
excluding the all 1’s row. We claim that the rows of B satisfy the requirements.
Indeed, by the properties of Hadamard matrices, each row of B has exactly
2m−1 1’s which satisfies the first requirement. Note also that, for m ≥ 2, two
distinct rows of H (excluding the all 1’s vector) have exactly 2m−2 element-
wise dot-products of the following four types: 1 ·1, 1 ·(−1), (−1) ·1, (−1) ·(−1).
Considering the construction of B, we have that the dot-product of any two
of its rows is 2m−2 since all the products in H involving −1 vanishes for B.
Similarly the dot-product of a row with the binary complement of another row
is 2m−2 by symmetry. Thus, the second and the third requirement also hold.

3.2 The Reduction

Lemma 13 guarantees the existence of of a set of binary vectorsB = {b1, . . . , b2`}
of dimension 2`+1 such that the following three conditions hold:

1. ‖bi‖2 = 2`/2 for 2` ≥ i ≥ 1

2. bi · bj = 2`−1 for 2` ≥ i > j ≥ 1.

3. bi · bj = 2`−1 for 2` ≥ i > j ≥ 1.

B can be constructed in time O(22`). In our reduction, ` will be a constant (to
be exactly determined later) inversely proportional to α which is the constant
in Raz’ Theorem. Hence, one can construct B in constant time. For the sake of
simplicity of our argument, we normalize the vectors in B, which then clearly
satisfies

1. ‖bi‖2 = 1 for 2` ≥ i ≥ 1

2. bi · bj = 1/2 for 2` ≥ i > j ≥ 1.

3. bi · bj = 1/2 for 2` ≥ i > j ≥ 1.

Given a Max-3SAT(5) instance and the reduction described in the previous
section, we will define a column vector for each vertex-label pair in L`, making
(35n/3)` + (2n)` vectors in total. (Note that |V `| = (5n/3)`, |W `| = n`,
Σ`
V = {1, . . . , 7`} and Σ`

W = {1, . . . 2`}). Each vector will be composed of
|E`| = (5n)` “blocks” which are either vectors from the set B or the zero
vector according to the adjacency information. More specifically, let Av,i be
the vector for the vertex label pair v ∈ V ` and i ∈ Σ`

V . Similarly let Aw,j be
the vector for the pair w ∈W and j ∈ Σ`

W . Both of these vectors are (5n)`2`+1

dimensional. The block of Av,i corresponding to an edge e ∈ E` is denoted
by Av,i(e). The block of Aw,j corresponding to an edge e ∈ E` is denoted by
Aw,j(e). We define

Av,i(e) =


bΠ`e(i)

3`/2
if e is incident to v

−→
0 if e is not incident to v.
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Aw,j(e) =


bj

5`/2
if e is incident to w

−→
0 if e is not incident to w

In order to show how our reduction works, we present a part of a simple
bipartite graph in Figure 1 with all the edges drawn between two pairs of
nodes, and the corresponding (row) vectors computed by the reduction in
Figure 2. Note that Av,i has exactly 3` non-zero blocks, and Aw,j has 5` non-
zero blocks. Hence, according to the definition above, their Euclidean norm is
1. The column vector set for the MAX-VOL instance is defined as

A ∈ RM×N = {Av,i|v ∈ V `, i ∈ Σ`
V } ∪ {Aw,j |w ∈W `, j ∈ Σ`

W }.

Note that M = (5n)`2`+1 and N = (35n/3)` + (2n)`, both having polynomial
size in n for constant `. From an intuitive point of view, we define mutually
orthogonal subspaces for each edge, and then we “spread” the Euclidean norm
of each vector to the subspaces corresponding to the edges incident to the
vertex corresponding to the vector. A crucial observation for this construction
is that, vectors Av1,i1 and Av2,i2 are orthogonal to each other for all v1, v2 ∈ V `,
and i1, i2 ∈ Σ`

V , since there are no edges between the vertices in V `. The
same result holds for the vertices in W `. From now on, this fact will be used
frequently without explicit reference. We set the number of column vectors k
to be chosen in the MAX-VOL instance to |V `| + |W `| = (5n/3)` + n`. Note
that k is a constant fraction of N , the total number of columns, i.e. there exists
a constant δ < 1 such that k = δN .

3.3 Analysis

We start with the completeness of the reduction:

s

s

PPPPPPPPPPPPPPPPPP

s

s

v1

v2

w1

w2

e1

e3

e2

qqq
Fig. 1 A part of a simple bipartite graph representing a Label-Cover instance
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Av1,1

Av1,2

Av2,1

Aw1,1

Aw2,1

e1 e2 e3

ae1 (1) ae2 (1) −→
0

−→
0

ae1 (2) ae2 (2) −→
0

−→
0

−→
0

−→
0 ae3 (1) −→

0

a(1) −→
0

−→
0

−→
0

−→
0 a(1) a(1) −→

0

ppp

ppp

ppp

p p p

p p p

p p p

p p p

ae(i) =
bΠ`e(i)

3`/2

a(j) =
bj

5`/2

Fig. 2 The resulting (row) vectors in MAX-VOL instance computed from the graph in
Figure 1 by our reduction

Theorem 14 If the Label Cover instance L` has a labeling that satisfies all
the edges, then in the MAX-VOL instance, there exist k column vectors with
volume 1.

Proof We show that there are at least k orthogonal vectors. For an edge e =
(v, w), let i ∈ Σ`

V and j ∈ Σ`
W be the labeling of v and w assigned by the

optimal labeling which satisfies all the edges. Then, in the MAX-VOL instance
the dot product of the vectors Av,i and Aw,j is

Av,i ·Aw,j =
∑
e∈E`

Av,i(e) ·Aw,j(e) = bΠ`e(i) · bj = bj · bj = 0. (2)

This is due to the fact that the labeling satisfies e, i.e. bΠ`e(i) = bj . Since all the
edges are satisfied, and there exists a vector from each vertex corresponding to
the optimal labeling satisfying the equation (2), we have |V `|+|W `| orthogonal
vectors, i.e. we have k orthogonal vectors.

Before proving the soundness of the reduction, which will prove hardness of
approximation, we first give the intuition for the argument. According to our
construction of the MAX-VOL instance, there is a set of vectors corresponding
to each node in V ` and W `. The set of vectors defined for a specific node has
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high pair-wise dot products whereas a vector from a node v1 ∈ V ` and another
from v2 in V ` are orthogonal to each other. The same goes for the vectors
defined for W `. Hence, if vectors are chosen from the same set corresponding
to a single node, the total volume will decrease exponentially with respect to
the number of such vectors. Let us call these vectors duplicates in V ` and W `.
The more intricate part of the analysis is due to the dot products between
the vectors defined for V ` and W `, which is enforced to be non-zero by the
unsatisfied edges in the Label-Cover instance. We will show that, in case the
Label-Cover instance has few satisfied edges, any k vectors chosen in the MAX-
VOL instance should satisfy the following: either the number of duplicates in
V ` and W ` is large enough so that the total volume is small, or the dot
products between V ` and W ` leads to a small volume.

Theorem 15 There exist absolute constants α and c such that, if the Label
Cover instance L` does not have any labeling that satisfies more than 2−α` of
the edges, then the volume of any k vectors in the MAX-VOL instance is at
most 2−ck.

Proof Let V ` = {v1, . . . , v(5n/3)`} and W ` = {w1, . . . , wn`}. Let Av be the

vectors corresponding to the vertex v ∈ V `: Av = {Av,i|i ∈ Σ`
V }. Similarly,

let Aw = {Aw,j |j ∈ Σ`
W } for w ∈W `. Let AV ` be the set of all vectors corre-

sponding to the nodes in V `, and AW ` be the set of all vectors corresponding
to the nodes in W `, i.e.

AV ` =

(5n/3)`⋃
i=1

Avi , AW ` =

n`⋃
i=1

Awi .

For a set of vectors C of size k, let Cu = C ∩ Au for all u ∈ {V ` ∪ W `},
CV ` = C ∩ AV ` and CW ` = C ∩ AW ` . Let V `(C) and W `(C) be the set of
vectors for which C “selects” at least one vector from V ` and W `, respectively.

V `(C) = {v ∈ V `|Cv 6= ∅}, W `(C) = {w ∈W `|C(Aw) 6= ∅}.

For ease of notation, we let kVC = |CV ` |, kWC
= |CW ` |, dVC = kVC−|V `(C)|, dWC

=
kWC

− |W `(C)|. Note that kVC and kWC
denote how many vectors are chosen

by C from V ` and W `, respectively. Whereas dVC and dWC
are the total num-

ber of duplicates in CV ` and CW ` , respectively. The following lemma relates
the number of duplicates on one side with its volume.

Lemma 16 V ol(CV `) ≤ (
√

3/2)dVC and V ol(CW `) ≤ (
√

3/2)dWC .

Proof Let P be the set of |V `(C)| elements which contains exactly one vec-
tor of the form Av,i for each v ∈ V `(C). In words, we consider the vectors
of C corresponding to the nodes in the Label-Cover instance minus all the
duplicates. For the duplicate vector Av,j , we have Av,i · Av,j = 1/2. Hence,
d(Av,j , P ) ≤ d(Av,j , Av,i) =

√
3/2. By the definition of dVC and by the Union

Lemma, we get V ol(CV `) ≤ (
√

3/2)dVC . The argument for V ol(CW `) is similar.
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Let the constant c = 1/(3 · 5`+1). Recall that, our reduction will require `
to be inversely proportional to α in Raz’ Theorem. Hence, although having an
exponential dependence on α, c is a constant. We will show that Theorem 15
holds for this value of c; we will prove that V ol(C) ≤ 2−ck for any set C of k
vectors. To this aim, we argue by contradiction. The next lemma roughly states
that if the volume of C is large enough, then its vectors are almost equally
distributed among the nodes of the Label-Cover instance. This condition will
in turn imply a small volume completing our argument.

Claim 17 If V ol(C) ≥ 2−ck for c = 1/(3 · 5`+1), then

(1− ε1)(5n/3)` < kVC < (1 + ε1)(5n/3)`, (3)

(1− ε2)n` < kWC
< (1 + ε2)n`, (4)

where ε1 = 1
3`+1

(
(3/5)` + (3/5)2`

)
and ε2 = 1

3`+1

(
(3/5)` + 1

)
.

Proof First, we note that V ol(C) ≤ V ol(CV `) since all the vectors in the
MAX-VOL instance have unit norm. Similarly, V ol(C) ≤ V ol(CW `). Thus, by
the premise of the claim, we have V ol(CV `) ≥ 2−ck and V ol(CW `) ≥ 2−ck. By
Lemma 16, we get

(
√

3/2)dVC = 2dVC (−1+log 3/2) ≥ V ol(CV `) ≥ 2−ck

which implies dVC ≤ ck/(1− log 3/2) < 5ck since log 3 < 1.6. The analysis for
dWC

along exactly the same lines also yields dWC
< 5ck. Noting the expressions

for c and k, and following the definitions, we obtain

kVC = |V `(C)|+ dVC < |V `|+ 5ck

= (5n/3)` +
1

3 · 5`
((5n/3)` + n`)

= (1 + ε1)(5n/3)`.

Similarly,

kWC
= |W `(C)|+ dWC

< |W `|+ 5ck

= n` +
1

3 · 5`
((5n/3)` + n`)

= (1 + ε2)n`

which proves the right hand sides of (3) and (4). Noting that kVC + kWC
=

k = (5n/3)` + n`, we get
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kVC = k − kWC
> (5n/3)` + n` − (1 + ε2)n`

= (5n/3)` − 1

3`+1
((3n/5)` + n`)

= (1− ε1)(5n/3)`

and

kWC
= k − kVC > (5n/3)` + n` − (1 + ε1)(5n/3)`

= n` − 1

3`+1
((3n/5)` + n`)

= (1− ε2)n`

which proves the left hand sides.

Claim 17 ensures that if the volume of a set of k vectors exceeds 2−ck, then
some certain concentration result should hold, namely Equation (3) and Equa-
tion (4). We will now show that, these equations imply V ol(C) < 2−ck which
is our contradiction.

Without loss of generality, let V `(C) = {v1, . . . , vq},W `(C) = {w1, . . . , wp}.
Note that these sets contain the nodes of the Label-Cover instance from
which C “selects” at least one vector. Let Q = {Av1,i1 , . . . , Avq,iq} where
Avs,is ∈ Cvs for s = 1, . . . , q. Let P = {Aw1,j1 , . . . , Awp,jp} where Avs,is ∈ Cvs
for s = 1, . . . , p. By definition,

q = kVC − dVC > (1− 2ε1)(5n/3)`, p = kWC
− dWC

> (1− 2ε2)n`.

In words, the set of nodes from which C selects at least one vector essentially
covers V ` and W `. These vectors are all orthogonal. From this point of view,
V `(C)) and W `(C)) play an important role in our argument. Since C “covers”
V ` and W ` and since the Label-Cover instance has many unsatisfied edges,
it means that the dot products of many vectors in CV ` with many vectors in
CW ` will be large. This will lead to small volume. Hence, we are essentially
interested in the number of unsatisfied edges between V `(C) and W `(C). Since
there are at most 2−α` satisfied edges in the Label-Cover instance, and there
are exactly 3` edges incident to a node in V `, the number of unsatisfied edges
incident to V `(C) is greater than (1− 2ε1− 2−α`)(5n)`. Similarly, the number
of unsatisfied edges incident to W `(C) is greater than (1 − 2ε2 − 2−α`)(5n)`.
Thus, the number of unsatisfied edges whose end points are in V `(C) and
W `(C), is greater than (1− 2ε1 − 2ε2 − 2−α`+1)(5n)`.

We now give an upper bound for the distance of the vectors in Q to P ,
namely ‖Avs,is − πP (Avs,is)‖2 for each Avs,is ∈ Q. To this end, we define the
set N(Avs,is) = {Cw|e = (Avs,is , w) is unsatisfied}. Note that the vectors in
different sets are mutually orthogonal, and by the reduction we have
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Avs,is ·Aw,j =
∑
e∈E`

Avs,is(e) ·Aw,j(e) = bΠ`e(i) · bj =
1

2 · 3`/2 · 5`/2

for Aw,j ∈ N(Avs,is) since e = (Avs,is , Aw,j) is unsatisfied. Thus, by the
Pythagoras Theorem, we obtain

d(Avs,is , P ) = ‖Avs,is − πP (Avs,is)‖2 <
(

1− |N(Avs,is)|
4 · 3` · 5`

) 1
2

.

Using the Union Lemma, we get

V ol(P ∪Q) ≤ V ol(P ) ·
q∏
s=1

d(Avs,is , P )

< V ol(P ) ·
q∏
s=1

(
1− |N(Avs,is)|

4 · 3` · 5`

) 1
2

.

The product in the last expression is maximized when all the factors are equal
to each other. We also previously showed that

∑q
s=1 |N(Avs,is)| > (1− 2ε1 −

2ε2−2−α`+1)(5n)` and that q, the number of distinct nodes hit in V ` satisfies,
q > (1− 2ε1)(5n/3)`. Hence, we obtain

V ol(P ∪Q) < V ol(P ) ·
q∏
s=1

(
1−

∑q
s=1 |N(Avs,is)|
q · 4 · 3` · 5`

) 1
2

< V ol(P ) ·
q∏
s=1

(
1− (1− 2ε1 − 2ε2 − 2−α`+1)(5n)`

(5n/3)` · 4 · 3` · 5`

) 1
2

= V ol(P ) ·
(

1− (1− 2ε1 − 2ε2 − 2−α`+1)

4 · 5`

) q
2

< V ol(P ) ·
(

1− (1− 2ε1 − 2ε2 − 2−α`+1)

4 · 5`

) (1−2ε1)(5n/3)`

2

.

To simplify, let t = 4·5`
(1−2ε1−2ε2−2−α`+1)

. For ` ≥ 1, we have

ε1 =
1

3`+1

(
(3/5)` + (3/5)2`

)
≤ 1

32
(
(3/5) + (3/5)2

)
< 3/20.

Noting that log e ≥ 10/7, we obtain log e · (1− 2ε1) ≥ 10/7 · 7/10 = 1. Then,
we get
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V ol(P ∪Q) < V ol(P ) ·
(

1− 1

t

)t· (1−2ε1)(5n/3)`

2t

≤ e−
(1−2ε1)(5n/3)`

2t

= 2− log e· (1−2ε1)(5n/3)`

2t

≤ 2−
(5n/3)`

2t ,

where e is the base of the natural logarithm. In the second inequality, we have
used the fact that V ol(P ) ≤ 1 and (1− 1

t )
t ≤ e−1 for t > 1.

We will now provide an upper bound for t to further simplify the last
expression. To this aim, let `′ be the smallest integer such that 2−α`

′+1 ≤
11/27. Taking logarithms and rearranging, it is easy to see that `′ =

⌈
log ( 54

11 )

α

⌉
.

Note also that for ` ≥ 2, we have 2ε1 < 1/27 and 2ε2 < 3/27. Then, for ` = `′,
we get

t =
4 · 5`

(1− 2ε1 − 2ε2 − 2−α`+1)
<

4 · 5`

(1− 1
27 −

3
27 −

11
27 )

=
4 · 5`

(4/9)
= 9 · 5`.

Since k = (5n/3)` + n`, we also have

n` = k/(1 + (5/3)`) > k/(5/3)`+1,

which yields

V ol(P ∪Q) < 2−
(5n/3)`

9·5` = 2−
n`

3`+2 < 2−
k

3·5`+1 = 2−ck,

which is our contradiction. Thus, the volume of a set of k vectors in a negative
instance of MAX-VOL cannot exceed 2−ck for c = 1

3·5`+1 .

We have shown that

– if the optimal value of the Label Cover instance is 1, then the optimal value
of the MAX-VOL instance is 1.

– if the optimal value of the `-fold Label Cover instance is less than 2−α`,
then the optimal value of the MAX-VOL instance is less than 2−ck.

By the combination of Theorem 10 and Theorem 12, we know that there exists
a gap producing reduction from SAT to `-fold Label Cover with parameters 1
and 2−α`. This means that there is a polynomial time reduction from SAT to
MAX-VOL such that, given a formula φ

– if φ is satisfiable , then OPT (MAX-VOL) = 1.

– if φ is not satisfiable , then OPT (MAX-VOL) < 2−ck.

Thus, unless P = NP , MAX-VOL is inapproximable within 2−ck for some
constant c > 0.
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4 Discussion

Our reduction heavily relies on the Raz’ Parallel Repetition Theorem [26].
Indeed, it doesn’t seem possible to get an exponential inapproximability re-
sult without parallel repetition. But, since the degrees of the vertices in the
Label-Cover instance exponentially increases with respect to the number of
repetitions, our constant c depends on the constant α in Raz’ result. It might
be possible to improve this constant by making use of more sophisticated par-
allel repetition theorems, but we did not proceed so far. Indeed, the exact
analysis is irrelevant as the constant will be too small in all cases. Overall, the
strength of our result is is directly related to the underlying theorems for the
inapproximability of Label-Cover.

Another way of getting a stronger hardness result is to find a more so-
phisticated reduction. In our MAX-VOL instance, the subspaces “reserved”
for each edge in the Label-Cover instance are orthogonal to each other. This
dramatically simplifies the analysis, yielding perfect completeness, i.e. volume
1 in MAX-VOL. It might be possible to construct a MAX-VOL instance for
which these subspaces have some pair-wise angle, so that we sacrifice the per-
fect completeness, but at the same time get a much smaller soundness. This
would improve the inapproximability result.

The obvious open problem is whether the inapproximability can be strength-
ened to 2−k+1. Recall that this is the lower bound for the greedy algorithm for
MAX-VOL. Considering the multiplicative nature of the problem yielding a
very small approximation ratio for the obvious greedy algorithm, a significant
improvement of the upper bound would be expected to provide asymptoti-
cally better approximations in the exponent. This suggests that the inherent
hardness of MAX-VOL might be very close to the performance of the greedy
algorithm. However, with the techniques we have used, it is not possible to
break the dependence of c on the constant in the parallel repetition theorems.

We would finally like to point out that the reduction and the analysis pro-
vided in this paper might be a good starting point for studying hardness of
other matrix approximation problems in general (e.g. [4,11]) for which no tech-
nique related to the PCP theorem have been used. Such an extension to other
matrix approximation problems is not trivial. Indeed, computing the volume
is already difficult although purely geometric intuition is used. Relating this
to other linear algebraic functions (e.g. singular values) which continuously
depend on the entries will put even more strain on the analysis.

Acknowledgments: We would like to thank the anonymous referees for
their helpful comments and Ioannis Koutis who, in the final stages of this
paper, pointed out to us the relevant lines of research in V-polytope theory
[22].
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