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Abstract

Given a matrix A ∈ Rm×n (n vectors in m dimensions), we consider the problem of selecting a subset of

its columns such that its elements are as linearly independent as possible. This notion turned out to be

important in low-rank approximations to matrices and rank revealing QR factorizations which have been

investigated in the linear algebra community and can be quantified in a few different ways. In this paper,

from a complexity theoretic point of view, we propose four related problems in which we try to find a sub-

matrix C ∈ Rm×k of a given matrix A ∈ Rm×n such that (i) σmax(C) (the largest singular value of C)

is minimum, (ii) σmin(C) (the smallest singular value of C) is maximum, (iii) κ(C) = σmax(C)/σmin(C)

(the condition number of C) is minimum, and (iv) the volume of the paralellepiped defined by the column

vectors of C is maximum. We establish the NP-hardness of these problems and further show that they do

not admit PTAS. We then study a natural greedy heuristic for the maximum volume problem and show that

it has approximation ratio 2−O(k log k). Our analysis of the greedy heuristic is tight to within a logarithmic

factor in the exponent, which we show by explicitly constructing an instance for which the greedy heuristic is

2−Ω(k) from optimal. When A has unit norm columns, a related problem is to select the maximum number

of vectors with a given volume. We show that if the optimal solution selects k columns, then greedy will

select Ω(k/ log k) columns, providing a log k-approximation.
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1. Introduction

To motivate the discussion, consider the set of three vectorse1 =

1

0

 , e2 =

0

1

 , u =

√1− ε2

ε

 ,

which are clearly dependent, and any two of which are a basis. Thus any pair can serve to reconstruct all

vectors. Suppose we choose e1, u as the basis, then e2 = (1/ε)u − (
√

1− ε2/ε)e1, and we have a numerical

instability in this representation as ε → 0. Such problems get more severe as the dimensionality of the

space gets large (curse of dimensionality), and it is natural to ask for the representatives to be “as far away
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from each other as possible”. A natural formalization of this problem is to find the representatives which

span the largest volume, since the volume is a quantification of how far the vectors are from each other.

Another would be to choose them so as the matrix that they form is well-conditioned, i.e. its condition

number is small which intuitively means that the matrix is as close as possible to an orthogonal one and its

smallest singular value is large with respect to the largest singular value. Thus, given a set of n vectors in

Rm represented as a matrix A ∈ Rm×n and a positive integer k, we discuss four distinct problems in which

we ask for a subset C ∈ Rm×k satisfying some spectral optimality condition:

1. MinMaxSingularValue: σ1(C) is minimum;

2. MaxMinSingularValue: σk(C) is maximum;

3. MinSingularSubset: κ(C) = σ1(C)/σk(C) is minimum;

4. MAX-VOL: V ol(C) =
∏k
i=1 σi(C), the volume of the paralellepiped defined by the column vectors of

C is maximum.

In all cases, the optimization is over all possible choices of C, and σ1(C) ≥ σ2(C) ≥ . . . ≥ σk(C) are the

singular values of the sub-matrix defined by C. Before presenting the main results of the paper, we will first

briefly review how these concepts are related to low-rank approximations to matrices and rank revealing QR

factorizations.

1.1. Low-rank approximations to matrices

The notion of volume has already received some interest in the algorithmic aspects of linear algebra.

In the past decade, the problem of matrix reconstruction and finding low-rank approximations to matrices

using a small sample of columns has received much attention (See for example [1, 2, 3? ]). Ideally, one has

to choose the columns to be as independent as possible when trying to reconstruct a matrix using a few

columns. Along these lines, in [1], the authors introduce ‘volume sampling’ to find low-rank approximation

to a matrix where one picks a subset of columns with probability proportional to their volume squared.

Improving the existence results in [1], [4] also provides an adaptive randomized algorithm which includes

repetitively choosing a small number of columns in a matrix to find a low-rank approximation. The authors

show that if one samples columns proportional to the volume squared, then one obtains a provably good

matrix reconstruction (randomized). Thus, sampling larger volume columns is good. A natural question is to

ask what happens when one uses the columns with largest volume (deterministic). The problem MAX-VOL

is the algorithmic problem of obtaining the columns with largest volume and we rely on [4] as the qualitative

intuition behind why obtaining the maximum volume sub-matrix should play an important role in matrix

reconstruction.

Goreinov and Tyrtyshnikov [5] provide a more explicit statement of how volume is related to low-rank

approximations in the following theorem:

Theorem 1.1. [5] Suppose that A is an m× n block matrix of the form
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A =

 A11 A12

A21 A22


where A11 is nonsingular, k × k, whose volume is at least µ−1 times the maximum volume among all k × k

sub-matrices. Then 1 ‖A22 −A21A
−1
11 A12‖∞ ≤ µ(k + 1)σk+1(A).

This theorem implies that if one has a good approximation to the maximum volume k × k sub-matrix,

then the rows and columns corresponding to this sub-matrix can be used to obtain a good approximation

to the entire matrix. If σk+1(A) is small for some small k, then this yields a low-rank approximation to

A. Thus, finding maximum volume sub-matrices is important for matrix reconstruction. We take a first

step in this direction by considering the problem of choosing an m × k sub-matrix of maximum volume.

Relating maximum volume k×k sub-matrices to maximum volume m×k matrices or obtaining an analogue

of Theorem 1.1 for m× k sub-matrices is beyond the scope of this paper.

1.2. Rank revealing QR factorizations

QR factorization, which has many practical applications [6], is another approach to finding an orthonormal

basis for the space spanned by the columns of a matrix. The task is to express a given matrix A ∈ Rn×n as

the product of an orthogonal matrix Q ∈ Rn×n and an upper-triangular matrix R ∈ Rn×n. For 1 ≤ k ≤ n,

the first k columns of Q spans the same space as that spanned by the first k columns of A. A naive

approach to finding such a factorization might yield linearly dependent columns in Q, if the structure of A is

disregarded. Hence, one might try to consider permuting the columns of A so as to find a QR factorization

which reveals “important” information about the matrix. Along these lines, rank revealing QR factorizations

were introduced by Chan [7].

Given a matrix A ∈ Rn×n, consider the QR factorization of the form

AΠ = Q

 R11 R12

0 R22


where R11 ∈ Rk×k and Π ∈ Rn×n is a permutation matrix. One can easily see that, by the interlacing

property of singular values (see [6]), σk(R11) ≤ σk(A) and σ1(R22) ≥ σk+1(A). If the numerical rank of

A is k, i.e. σk(A) � σk+1(A), then one naturally would like to find a permutation Π for which σk(R11)

is sufficiently large and σ1(R22) is sufficiently small. A QR factorization is said to be a rank revealing QR

(RRQR) factorization if σk(R11) ≥ σk(A)/p(k, n) and σ1(R22) ≤ σk+1(A)p(k, n) where p(k, n) is a low degree

polynomial in k and n.

The QR algorithm proposed by Businger and Golub [8], which is essentially the algorithm we will analyze

for maximizing the volume, works well in practice. But, as is pointed out by Kahan [9], there are matrices

1‖B‖∞ denotes the maximum modulus of the entries of a matrix B.
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where it fails to satisy the requirements of an RRQR factorization yielding exponential p(k, n). Much

research on finding RRQR factorizations has yielded improved results for p(k, n) [7, 10, 11, 12, 13, 14]. It

was noted in [10] that it turns out that “the selection of the sub-matrix with the maximum smallest singular

value suggested in [15] can be replaced by the selection of a sub-matrix with maximum determinant”. (Our

hardness results for all the problems we consider also make a justification of how similar they are). Along

these lines, the effort has been trying to find a sub-matrix with a volume as large as possible. Pan [16] unifies

the main approaches by defining the concept of local maximum volume and then gives a theorem relating it

to p(k, n).

Definition 1.2. [16] Let A ∈ Rm×n and C be a sub-matrix of A formed by any k columns of A. V ol(C)( 6= 0)

is said to be local µ-maximum volume in A, if µV ol(C) ≥ V ol(C ′) for any C ′ that is obtained by replacing

one column of C by a column of A which is not in C.

Theorem 1.3. [16] For a matrix A ∈ Rn×n, an integer k (1 ≤ k < n) and µ ≥ 1, let Π ∈ Rn×n be a

permutation matrix such that the first k columns of AΠ is a local µ-maximum in A. Then, for the QR

factorization

AΠ = Q

 R11 R12

0 R22

 ,

we have σmin(R11) ≥ (1/
√
k(n− k)µ2 + 1)σk(A) and σ1(R22) ≤

√
k(n− k)µ2 + 1σk+1(A).

We would like to note that, MAX-VOL asks for a stronger property of the set of vectors to be chosen, i.e.

it asks for a “good” set of vectors in a global sense rather than requiring local optimality. Nevertheless, it is

clear that an approximation ratio for MAX-VOL translates to a result in the context of RRQR factorizations.

Because, if one could obtain a subset which is µ-maximum (as opposed to local µ-maximum) then the same

theorem would hold, since the volume of any new set of vectors which is a result of exchanging a column

between the current set and the rest of the columns is smaller than the largest possible volume. However, the

result obtained via the approximation factor we provide for Greedy is already inferior to a mathematically

different analysis which proves p(k, n) =
√
n− k 2k [13] and we do not state it explicitly.

1.3. Our contributions

First, we establish the NP-hardness of the problems we consider. In fact, we prove that no PTAS for

them exists by showing that they are inapproximable to within some factor. Specifically, we obtain the

following inapproximability results:

1. MinMaxSingularValue is inapproximable to within 2/
√

3− ε;

2. MaxMinSingularValue is inapproximable to within (2/3)1/2(k−1) + ε;

3. MinSingularSubset is inapproximable to within (22k−3/3k−2)1/2(k−1) − ε;
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4. MAX-VOL is inapproximable to within 2
√

2/3 + ε.

Next, we consider a simple (deterministic) greedy algorithm for the last problem and show that it achieves

a 1/k! approximation to the optimal volume when selecting k columns. We also construct an explicit example

for which the greedy algorithm gives no better than a 1/2k−1 approximation ratio, thus proving that our

analysis of the greedy algorithm is almost tight (to within a logarithmic factor in the exponent). An important

property of the approximation ratio for the greedy algorithm is that it is independent of n, and depends

only on the number of columns one wishes to select.

We then consider the related problem of choosing the maximum number of vectors with a given volume,

in the case when all columns in A have unit norm. If the optimal algorithm loses a constant factor with every

additional vector selected (which is a reasonable situation), then the optimal volume will be 2−Ω(k). When

the optimal volume for k vectors is 2−Ω(k) as motivated above, we prove that the greedy algorithm chooses

Ω(k/ log k) columns having at least that much volume. Thus, the greedy algorithm is within a log k-factor

of the maximum number of vectors which can be selected given a target volume.

1.4. Preliminaries and Notation

For a matrix A ∈ Rm×n where n ≤ m, σi(A) is the ith largest singular value of A for 1 ≤ i ≤ n.

Let A = {v1, v2, · · · vn} be given in column notation. The volume of A, V ol(A) can be recursively defined

as follows: if A contains one column, i.e. A = {v1}, then V ol(A) = ‖v‖, where ‖ · ‖ is the Euclidean

norm. If A has more than one column, V ol(A) = ‖v − π(A−{v})(v)‖ · V ol(A − {v}) for any v ∈ A, where

πA(v) is the projection of v onto the space spanned by the column vectors of A. It is well known that

π(A−{v})(v) = AvA
+
v v, where Av is the matrix whose columns are the vectors in A − {v}, and A+

v is the

pseudo-inverse of Av (see for example [6]). Using this recursive expression, we have

V ol(S) = V ol(A) = ‖v1‖ ·
n−1∏
i=1

‖vi+1 −AiA+
i vi+1‖

where Ai = [v1 · · · vi] for ≤ i ≤ n− 1.

1.5. Organization of the paper

The remainder of the paper is structured as follows: In Section 2, we provide hardness results for the

four problems. The approximation ratio of a greedy algorithm for MAX-VOL is analyzed in Section 3 where

we also show tightness of the analysis. Finally, some open questions and comments are outlined in Section

4.

2. Hardness of Subset Selection Problems

We define four decision problems:

Problem: Min-MaxSingularValue
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Instance: A matrix A ∈ Rm×n of rank at least k, and M ∈ R.

Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σ1(C) ≤M .

Problem: Max-MinSingularValue

Instance: A matrix A ∈ Rm×n of rank at least k, and M ∈ R.

Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σk(C) ≥M .

Problem: Min-SingularSubset

Instance: A matrix A ∈ Rm×n of rank at least k, and M ∈ R.

Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σ1(C)/σk(C) ≤M .

Problem: MAX-VOL

Instance: A matrix A ∈ Rm×n with normalized columns and of rank at least k, and M ∈ [0, 1].

Question: Does there exist a sub-matrix C ∈ Rm×k of A such that V ol(C) ≥M?

Theorem 2.1. Max-MinSingularValue, Min-MaxSingularValue, Min-SingularSubset and MAX-VOL are

NP-Hard.

Proof. We give a reduction from ‘exact cover by 3-sets’, which is known to be NP-complete (See for example

[17, 18]). This reduction will provide the NP-hardness result for all the problems.

Problem: Exact cover by 3-sets (X3C)

Instance: A set Q and a collection C of 3-element subsets of Q.

Question: Does there exist an exact cover for Q, i.e. a sub-collection C ′ ⊆ C such that every element in Q

appears exactly once in C ′?

We use the following reduction from X3C to the problems: let Q = {q1, q2, . . . qm} and C = {c1, c2, . . . cn}

be given as an instance of X3C. We construct the matrix A ∈ Rm×n, in which each column A(j) corresponds

to the 3-element set cj . The non-zero entries in A(j) correspond to the elements in cj . Specifically, set

Aij =

 1/
√

3 if qi ∈ cj
0 otherwise

(Note that every A(j) has exactly 3 non-zero entries and has unit norm.) For the reduced instances, we set

k = m/3 and M = 1.

It is clear that the reduction is polynomial time. All that remains is to show that the instance of X3C is

true if and only if the corresponding instances of the four decision problems are true.
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Suppose the instance of X3C is true. Then, there is a collection C ′ = {ci1 , ci2 , . . . , cim/3
} of cardinality

m/3, which exactly covers Q. (Note that, m should be a multiple of 3, otherwise no solution exists.) Consider

the sub-matrix C of A corresponding to the 3-element sets in C ′. Since the cover is exact, cij ∩cik = ∅ ∀j, k ∈

{1, . . . ,m/3} where j 6= k, which means that A(ij) · A(ik) = 0. Hence, C is orthonormal and all its singular

values are 1, which makes the instances of all four problems we consider true.

Conversely, suppose the instance of Min-MaxSingularValue is true, i.e. there exists C such that σ1(C) ≤ 1.

We have σ1(C) = ‖C‖2 ≥ ‖C‖F /
√
k = 1, which gives σ1(C) = 1. On the other hand,

∑k
i=1 σi(C)2 =

‖C‖2F = k. Thus, all the singular values of C are equal to 1, i.e. C is an orthogonal matrix. Now, suppose

the instance of Max-MinSingularValue is true, namely there exists C such that σk(C) ≥ 1. Then, the volume

defined by the vectors in C, V ol(C) =
∏k
i=1 σi(C) ≥ 1. Since the vectors are all normalized, we also have

V ol(C) ≤ 1, which gives
∏k
i=1 σi(C) = 1. Thus, all the singular values of C are equal to 1, which means

that C is an orthogonal matrix. If the instance of Min-SingularSubset is true, i.e. there exists C such

that σ1(C)/σk(C) ≤ 1, we immediately have that C is an orthogonal matrix. Finally, that the instance of

MAX-VOL is true means that the columns are pair-wise orthonormal and we have the desired result.

Thus, if any of the reduced instances are true, then there is a C in A whose columns are pairwise

orthonormal. We will now show that if such a C exists, then the instance of X3C is true. Let u, v be two

columns in C; we have u · v = 0. Since the entries in C are all non-negative, ui · vi = 0 ∀i ∈ [1,m], i.e. u and

v correspond to 3-element sets which are disjoint. Hence, the columns in C correspond to a sub-collection

C ′ of 3-element sets, which are pair-wise disjoint. Therefore, every element of Q appears at most once in

C ′. C ′ contains m elements corresponding to the m non-zero entries in C. It follows that every element of

Q appears exactly once in C ′, concluding the proof.

Our reduction in the NP-hardness proofs yields gaps, which also provides hardness of approximation

results for the optimization versions of the problems.

Theorem 2.2. Min-MaxSingularValue(k) is NP-hard to approximate within 2/
√

3− ε.

Proof. We will provide a lower bound for σ1(C) for the reduced instance of X3C when it is false, which

will establish the hardness result. Assume the X3C instance is not true. Then any collection of size m/3 has

at least two sets which have non-empty intersection. Let si and sj be two sets such that |si ∩ sj | = 1. And,

let vi, vj be the corresponding vectors in the Min-MaxSingularValue instance. Then, we have v1 · v2 = 1/3.

Hence, v1 and v2 correspond to the following matrix V upto rotation:

V =

 1 1
3

0 2
√

2
3


Note that, if |si ∩ sj | > 1, then the largest singular value of the corresponding matrix will be greater than

that of V as v1 · v2 will have a greater value. Also, it is a well known fact that the largest eigenvalue of any

symmetric matrix A is greater than that of any principal sub-matrix of A. Thus, if we consider a matrix W
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of more than two vectors which also contain vi and vj , its largest singular value (which is the square root of

the largest eigenvalue of WTW ) will be greater than that of V . Hence, in order to find a lower bound for

σ1(C), it suffices to analyze V . This amounts to finding the square roots of the eigenvalues of V TV . Hence,

we are seeking λ such that

det(V TV − λI) =

∣∣∣∣∣∣
10
9 − λ

2
√

2
9

2
√

2
9

8
9 − λ

∣∣∣∣∣∣ = 0. (1)

λ = 4/3 and λ = 2/3 satisfy (1). Hence, σ1(C) ≥ 2/
√

3, which concludes the proof.

Theorem 2.3. MAX-VOL(k) is NP-Hard to approximate within 2
√

2/3 + ε.

Proof. Assume the X3C instance is not true. Then, we have at least one overlapping element between two

sets. Any collection of size m/3 will have two sets v1, v2 which have non-zero intersection. The corresponding

columns in A′ have d(v1, v2) = ‖v1− (v1 ·v2)v2‖ = ‖v1− (1/3)v2‖ ≤ 2
√

2/3, where d(v1, v2) is the orthogonal

part of v1 with respect to v2. Since V ol(A′) ≤ d(v1, v2), we have V ol(A′) ≤ 2
√

2/3. A polynominal time

algorithm with a 2
√

2/3+ ε approximation factor for MAX-VOL would thus decide X3C, which would imply

P = NP .

Theorem 2.4. Max-MinSingularValue is NP-hard to approximate within (2/3)1/2(k−1) + ε.

Proof. If the X3C instance is false, from the proof in Theorem 2.3 we have
∏k
i=1 σi(C) ≤ 2

√
2/3. Combining

this with σ1(C) ≥ 2/
√

3 from the proof in Theorem 2.2, we get
∏k
i=2 σi(C) ≤

√
6/3, which gives σk(C) ≤

(
√

6/3)1/(k−1) = (2/3)1/2(k−1).

Theorem 2.5. Min-SingularSubset is NP-hard to approximate within (22k−3/3k−2)1/2(k−1) − ε.

Proof. Assuming that the X3C instance is false, from the proofs in Theorem 2.2 and Theorem 2.4, we have

σ1(C)/σk(C) ≥ (22k−3/3k−2)1/2(k−1) − ε.

3. The Greedy Approximation Algorithm for MAX-VOL

Having shown that the decision problem MAX-VOL is NP-hard, it has two natural interpretations as an

optimization problem for a given matrix A:

1. MAX-VOL(k): Given k, find a subset of size k with maximum volume.

2. MaxSubset(V): Given V and that A has unit norm vectors, find the largest subset C ⊆ A with volume

at least V .

The natural question is whether there exists a simple heuristic with some approximation guarantee.

One obvious strategy is the following greedy algorithm which was also proposed in [8] to construct QR

factorizations of matrices:

We would like to note that one can obtain a result related to the approximation ratio of Greedy which

is implicit in [13] via the following theorem:
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Theorem 3.1. [13] For a matrix A ∈ Rn×n and an integer k(1 ≤ k < n), let the first k columns of AΠ be

the columns chosen by Greedy where Π ∈ Rn×n is a permutation matrix and

AΠ = Q

 R11 R12

0 R22


Then, σi(R11) ≥ σi(A)/(

√
n− i 2i) for 1 ≤ i ≤ k.

Based on this theorem, one can easily derive the following result.

Theorem 3.2. Greedy has approximation ratio O(2−k(k−1)/2n−k/2).

Proof. Let C be the first k columns of AΠ, i.e. the columns chosen by Greedy. Since, Q is orthogonal, we

have

V ol(C) = V ol(R11) =

k∏
i=1

σi(R11) ≥
k∏
i=1

σi(A)/(
√
n− i 2i)

≥ 2−k(k−1)/2

(
k∏
i=1

σi(A)/n1/2

)

≥ 2−k(k−1)/2n−k/2

(
k∏
i=1

σi(A)

)
≥ 2−k(k−1)/2n−k/2 · V olmax

where V olmax is the maximum possible volume a subset can attain.

This analysis is loose as the volume
∏k
i=1 σi(A) may not be attainable using k columns of A. One major

problem with this bound is that it has exponential dependence on n. Our (almost) tight analysis will provide

an improvement on the approximation ratio of the theorem above in two ways: first, we will remove the

dependence on n, and second we get better than quadratic dependence on k in the exponent. The outline of

the remainder of this section is as follows: In Section 3.1, we analyze the performance ratio of Greedy. Section

3.2 presents an explicit example for which Greedy is bad. We analyze Greedy for MaxSubset(V) in Section

3.3 where we require the columns of the matrix be unit norm, in which case the volume is monotonically

non-increasing or non-decreasing in the number of vectors chosen by any algorithm.

3.1. Approximation Ratio of Greedy

We consider Greedy after k steps. First, we assume that the dimension of the space spanned by the

column vectors in A is at least k, since otherwise there is nothing to prove. Let span(S) denote the space

spanned by the vectors in the set S and let πS(v) be the projection of v onto span(S). In this section,

let d(v, S) = ‖v − πS(v)‖ be the norm of the part of v orthogonal to span(S). Let Vk = {v1, . . . , vk} be

the set of vectors in order that have been chosen by the greedy algorithm at the end of the kth step. Let
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Wk = {w1, . . . , wk} be a set of k vectors of maximum volume. Our main result in this subsection is the

following theorem:

Theorem 3.3. V ol(Vk) ≥ 1/k! · V ol(Wk).

We prove the theorem through a sequence of lemmas. The basic idea is to show that at the jth step, Greedy

loses a factor of at most j to the optimal. Theorem 3.3 then follows by an elementary induction. First, define

αi = π(Vk−1)(wi) for i = 1, . . . , k. αi is the projection of wi onto span(Vk−1) where Vk−1 = {v1, . . . , vk−1}.

Let βi = wi − π(Vk−1)(wi). Hence, we have

wi = αi + βi for i = 1, . . . , k. (2)

Note that the dimension of span(Vk−1) is k − 1, which means that the αi’s are linearly dependent. We

will need some stronger properties of the αi’s.

Definition 3.4. A set of m vectors is said to be in general position, if they are linearly dependent and any

m− 1 element subset of them are linearly independent.

It’s immediate from Definition 3.4 that

Remark 3.5. Let U = {γ1, . . . , γm} be a set of m vectors in general position. Then, γi can be written as a

linear combination of the other vectors in U , i.e.

γi =
∑
l 6=i

λilγl (3)

for i = 1, . . . ,m. λil’s are the coefficients of γl in the expansion of γi.

Lemma 3.6. Let U = {γ1, . . . , γm} be a set of m vectors in general position. Then, there exists a γi such

that |λij | ≤ 1 for all j 6= i.

Proof. Assume, without loss of generality that A = {γ2, γ3, . . . , γm} has the greatest volume among all

possible m − 1 element subsets of U . We claim that γ1 has the desired property. Consider the set Bj =

{γ1, . . . γj−1, γj+1, . . . , γm} for 2 ≤ j ≤ m. Let Cj = A− {γj} = Bj − {γ1}. Then, since A has the greatest

volume, V ol(A) = V ol(Cj) ·d(γj , Cj) ≥ V ol(Bj) = V ol(Cj) ·d(γ1, Cj). Hence, we have d(γj , Cj) ≥ d(γ1, Cj).

Then, using (3), we can write

γ1 = λ1
jγj +

∑
l 6=j,l 6=1

λ1
l γl (4)

Denoting δj = πCj
(γj) and θj = γj − δj , (4) becomes

γ1 =

λ1
jδj +

∑
l 6=j,l 6=1

λ1
l γl

+ λ1
jθj
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where the term in parentheses is in span(Cj). Hence, the part of γ1 which is not in span(Cj), θ1 =

γ1−πCj
(γ1) = λ1

jθj and so ‖θ1‖ = |λ1
j |‖θj‖. Note that ‖θ1‖ = d(γ1, Cj) and ‖θj‖ = d(γj , Cj), so d(γ1, Cj) =

|λ1
j |d(γj , Cj). Since d(γ1, Cj) ≤ d(γj , Cj), we have |λ1

j | ≤ 1.

Lemma 3.7. If ‖αi‖ > 0 for i = 1, . . . , k and k ≥ 2, then there exists a set of m vectors U = {αi1 , . . . , αim} ⊆

{α1, . . . , αk} with m ≥ 2 that are in general position.

Proof. Note that the cardinality of a set U with the desired properties should be at least 2, since otherwise

there is nothing to prove. We argue by induction on k. For the base case k = 2, we have two vectors α1

and α2 spanning a 1-dimensional space and clearly any one of them is linearly independent since neither is

0. Assume that, as the induction hypothesis, any set of k ≥ 2 non-zero vectors {α1, . . . , αk} spanning at

most a k − 1 dimensional space has a non-trivial subset in general position. Consider a k + 1 element set

A = {α1, . . . , αk+1} with dim(span(A)) ≤ k. If the vectors in A are not in general position, then there is

a k element subset A′ of A which is linearly dependent. Hence, dim(span(A′)) ≤ k − 1 for which, by the

induction hypothesis, we know that there exists a non-trivial subset in general position.

The existence of a subset in general position guaranteed by Lemma 3.7 will be needed when we apply

the next lemma.

Lemma 3.8. Assume ‖αi‖ > 0 for i = 1, . . . , k. Then, there exists an αij such that d(αij ,W
′
k−1) ≤

(m− 1) · d(vk, Vk−1), where W ′k−1 = Wk − {wij}.

Proof. Let U = {αi1 , . . . , αim} ⊆ {α1, . . . , αk} be in general position where m ≥ 2 (the existence of U is

given by Lemma 3.7). Assume αi1 has the property given by Lemma 3.6. Let U ′ = {wi2 , . . . , wim}. We claim

that αi1 has the desired property. First, note that d(αi1 ,W
′
k−1) ≤ d(αi1 , U

′), since span(U ′) is a subspace

of span(W ′k−1). We seek a bound on d(αi1 ,W
′
k−1). Using (3) and (2), we have

αi1 =
∑
l 6=1

λ1
il
αil =

∑
l 6=1

λ1
il

(wil − βil).

where αil ’s are the vectors in U and βil ’s are their orthogonal parts. Rearranging,

∑
l 6=1

λ1
il
βil =

∑
l 6=1

λ1
il
wil

− αi1 .
Note that the right hand side is an expression for the difference between a vector in span(U ′) and αi1 . Hence,

11



d(αi1 ,W
′
k−1) ≤ d(αi1 , U

′) = min
v∈span(U ′)

‖v − αi1‖

≤ ‖
∑
l 6=1

λ1
il
wil − αi1‖

= ‖
∑
l 6=1

λ1
il
βil‖

≤
∑
l 6=1

λ1
il
‖βil‖

≤ (m− 1) ·max1≤l≤m‖βil‖

≤ (m− 1) · d(vk, Vk−1).

where the last two inequalities follow from Lemma 2.1 and the greedy property of the algorithm, respectively.

Before stating the final lemma, which gives the approximation factor of Greedy at each round, we need

the following simple observation.

Lemma 3.9. Let u be a vector, V and W be subspaces and α = πV (u). Then d(u,W ) ≤ d(u, V ) + d(α,W ).

Proof. Let γ = πW (α). By triangle inequality for vector addition, we have

‖u− γ)‖ ≤ ‖u− α‖+ ‖α− γ‖ = d(u, V ) + d(α,W ). The result follows since d(u,W ) ≤ ‖u− γ‖.

Lemma 3.10. At the kth step of Greedy, there exists a wi such that d(wi,W
′
k−1) ≤ k · d(vk, Vk−1) where

W ′k−1 = Wk − {wi}.

Proof. For k = 1, there’s nothing to prove. For k ≥ 2, there are two cases.

1. One of the wi’s is orthogonal to Vk−1 (‖αi‖ = 0). In this case, by the greedy property, d(vk, Vk−1) ≥

‖wi‖ ≥ d(wi,W
′
k−1), which gives the result.

2. For all wi, ‖αi‖ > 0, i.e., all wi have non-zero projection on Vk−1. Assuming that α1 = πVk−1
(w1) has

the desired property proved in Lemma 3.8, we have for the corresponding w1

d(w1,W
′
k−1) ≤ d(w1, Vk−1) + d(α1,W

′
k−1)

≤ ‖β1‖+ d(α1,W
′
k−1)

≤ ‖β1‖+ (m− 1) · d(vk, Vk−1)

≤ m · d(vk, Vk−1).

The first inequality is due to Lemma 3.9. The last inequality follows from the greedy property of the

algorithm, i.e. the fact that d(vk, Vk−1) ≥ ‖β1‖. The lemma follows since m ≤ k.
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The last lemma immediately leads to the result of Theorem 3.3, with a simple inductive argument as

follows:

Proof. The base case is easily established since V ol(V1) = V ol(W1). Assume that V ol(Vk−1) ≥ 1/(k− 1)! ·

V ol(Wk−1) for some k > 2. By Lemma 3.10, we have a wi such that d(wi,W
′
k−1) ≤ k · d(vk, Vk−1) where

W ′k−1 = Wk − {wi}. It follows that

V ol(Vk) = d(vk, Vk−1) · V ol(Vk−1)

≥
d(wi,W

′
k−1)

k
· V ol(Wk−1)

(k − 1)!

≥
d(wi,W

′
k−1)

k!
· V ol(W ′k−1)

=
V ol(Wk)

k!
.

3.2. Lower Bound for Greedy

We give a lower bound of 1/2k−1 for the approximation factor of Greedy by explicitly constructing a

bad example. We will inductively construct a set of unit vectors satisfying this lower bound. It will be the

case that the space spanned by the vectors in the optimal solution is the same as the space spanned by the

vectors chosen by Greedy. An interesting property of our construction is that both the optimal volume and

the volume of the vectors chosen by Greedy approach 0 in the limit of a parameter δ, whereas their ratio

approaches to 1/2k−1.

We will first consider the base case k = 2: let the matrix A = [v1w1w2] where dim(A) = 2 and

d(v1, w1) = d(v1, w2) = δ for some 1 > δ > 0 such that θ, the angle between w1 and w2 is twice the

angle between v1 and w1, i.e. v1 is ‘between’ w1 and w2. If the greedy algorithm first chooses v1, then

limδ→0 V ol(V2)/V ol(W2) = 1/2 cos θ/2 = 1/2. Hence, for k = 2, there’s a set of vectors for which V ol(W2) =

(2− ε) · V ol(V2) for arbitrarily small ε > 0.

For arbitrarily small ε > 0, assume that there is an optimal set of k vectors Wk = {w1, . . . , wk} such that

V ol(Wk) = (1−ε)2k−1 ·V ol(Vk) where Vk = {v1, . . . , vk} is the set of k vectors chosen by Greedy. The vectors

in Wk and Vk span a subspace of dimension k, and assume wi ∈ Rd where d > k. Let d(v2, V1) = ε1 = δ

for some 1 > δ > 0, and d(vi+1, Vi) = εi = δεi−1 for i = 2, . . . , k − 1. Thus, V ol(Vk) = δk(k−1)/2 and

V ol(Wk) = (1 − ε)2k−1δk(k−1)/2. Assume further that for all wi in Wk, d(wi, Vj) ≤ εj for j = 1, . . . , k − 2

and d(wi, Vk−1) = εk−1 so that there exists an execution of Greedy where no {w1, . . . , wk} is chosen.

We will now construct a new set of vectors Wk+1 = W ′k ∪ {wk+1} = {w′1, . . . w′k, wk+1} which will be the

optimal solution. Let wji = πVj
(wi), and let eji = πVj

(wi)− πVj−1
(wi) for j = 2, . . . , k and e1

i = w1
i . Namely,

eij is the component of wi which is in Vj , but perpendicular to Vj−1 and e1
i is the component of wi which

in in the span of v1. (Note that ‖eki ‖ = εk−1.) Let u be a unit vector perpendicular to span(Wk). For each

wi we define a new vector w′i = (
∑k−1
j=1 e

j
i ) +

√
1− δ2eki + δεk−1u. Intuitively, we are defining a set of new
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vectors which are first rotated towards Vk−1 and then towards u such that they are δεk−1 away from Vk.

Introduce another vector wk+1 =
√

1− δ2v1 − δεk−1u. Intuitively, this new vector is v1 rotated towards the

negative direction of u. Note that, in this setting εk = δεk−1. We finally choose vk+1 = wk+1.

Lemma 3.11. For any w ∈Wk+1, d(w, Vj) ≤ εj for j = 1, . . . , k − 1 and d(w, Vk) = εk.

Proof. For w = wk+1, d(wk+1, Vj) = εk ≤ εj for j = 1, . . . , k. Let w = w′i for some 1 ≤ i ≤ k. Then, for any

1 ≤ j ≤ k−1, we have d(w′i, Vj)
2 =

∑k−1
l=j+1 ‖eli‖2+(1−δ2)‖eki ‖2+δ2‖eki ‖2 =

∑k
l=j+1 ‖eli‖2 = d(wi, Vj)

2 ≤ εj2

by the induction hypothesis.

Lemma 3.11 ensures that {v1, . . . , vk+1} is a valid output of Greedy. What remains is to show that for

any ε > 0, we can choose δ sufficiently small so that V ol(Wk+1) ≥ (1 − ε)2k · V ol(Vk+1). In order to show

this, we will need the following lemmas.

Lemma 3.12. limδ→0 V ol(Wk+1) = 2εk · V ol(Wk).

Proof. With a little abuse of notation, let Wk+1 denote the matrix of coordinates for the vectors in the set

Wk+1.

Wk+1 =



w1,1 w1,2 · · · w1,k

√
1− δ2k

w2,1 w2,2 · · · w2,k 0
...

...
. . .

...
...

√
1− δ2wk,1

√
1− δ2wk,2 · · ·

√
1− δ2wk,k 0

δk δk · · · δk −δk


where wi,j is the ith coordinate of wj , which is in Wk. (Note that this is exactly how U is constructed in the

inductive step). Expanding on the right-most column of the matrix, we have

V ol(Wk+1) = |det(Wk+1)| = |
√

1− δ2k · det(A) + (−1)k+1δk · det(B)| (5)

where A and B are the corresponding minors of the coefficients, i.e. the left-most lower and upper k × k

sub-matrices of Wk+1, respectively. Clearly, we have det(B) =
√

1− δ2 · det(Wk) where Wk is the matrix

of coordinates for the vectors in the set Wk. Let C be the matrix obtained by replacing each w1,i by 1 in

Wk. Then, using row interchange operations on A, we can move the last row of A to the top. This gives a

sign change of (−1)k−1. Then, factoring out
√

1− δ2 and δk in the first and last rows respectively, we have

det(A) = (−1)k−1δk
√

1− δ2 · det(C). Hence, (5) becomes

|det(Wk+1)| = (δk
√

1− δ2)|
√

1− δ2k · det(C) + det(Wk)| (6)

We will need the following lemma to compare det(Wk) and det(C).

Lemma 3.13. limδ→0 det(C)/ det(Wk) = 1.
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Proof. For i > 1, the elements of the ith rows of both Wk and C has δi−1 as a common coefficient by

construction. Factoring out these common coefficients, we have det(Wk) = δk(k−1)/2 · det(U) and det(C) =

δk(k−1)/2 ·det(U ′) where U and U ′ are matrices with non-zero determinants as δ approaches 0. Furthermore,

limδ→0det(U) = det(U ′) as the elements in the first row of U approaches 1. The result then follows.

Using Lemma 3.13 and (6), we have

limδ→0V ol(Wk+1) = limδ→0|det(Wk+1)| = 2δk|det(Wk)| = 2εk · V ol(Wk)

Theorem 3.14. V ol(Wk+1) ≥ (1− ε)2k · V ol(Vk+1) for arbitrarily small ε > 0.

Proof. Given any ε′ > 0 we can choose δ small enough so that V ol(Wk+1) ≥ 2εk(1− ε′) · V ol(Wk), which

is always possible by Lemma 3.12. Given any ε′′, we can apply induction hypothesis to obtain Vk and Wk

such that V ol(Wk) ≥ (1− ε′′)2k−1 · V ol(Vk). Thus,

V ol(Wk+1) ≥ 2εk(1− ε′) · V ol(Wk)

≥ 2εk(1− ε′)(1− ε′′)2k−1 · V ol(Vk)

= (1− ε′)(1− ε′′)2k · V ol(Vk+1),

where we have used V ol(Vk+1) = εk ·V ol(Vk). Choosing ε′ and ε′′ small enough such that (1−ε′)(1−ε′′) > 1−ε

gives the result.

3.3. Maximizing the Number of Unit norm Vectors Attaining A Given Volume

In this section, we give a result on approximating the maximum number of unit norm vectors which

can be chosen to have at least a certain volume. This result is essentially a consequence of the previous

approximation result. We assume that all the vectors in A have unit norm, hence the volume is non-increasing

in the number of vectors chosen by Greedy. Let OPTk denote the optimal volume for k vectors. Note that

OPTk ≥ OPTk+1 and the number of vectors m, chosen by Greedy attaining volume at least OPTk is not

greater than k. Our main result states that, if the optimal volume of k vectors is 2−Ω(k), then Greedy chooses

Ω(k/ log k) vectors having at least that volume. Thus, Greedy gives a log k-approximation to the optimal

number of vectors. We prove the result through a sequence of lemmas. The following lemma is an immediate

consequence of applying Greedy on Wk.

Lemma 3.15. Let Wk = {w1, . . . , wk} be a set of k vectors of optimal volume OPTk. Then there exists a per-

mutation π of the vectors in Wk such that dπ(k) ≤ dπ(k−1) ≤ . . . ≤ dπ(2) where dπi
= d(wπi

, {wπ1
, . . . , wπi−1

})

for k ≥ i ≥ 2.

We use this existence result to prove the following lemma.
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Lemma 3.16. OPTm ≥ (OPTk)(m−1)/(k−1) where m ≤ k.

Proof. Let Wk = {w1, . . . , wk} be a set of vectors of optimal volume OPTk. By Lemma 3.15, we know

that there exists an ordering of vectors in Wk such that dπ(k) ≤ dπ(k−1) ≤ . . . ≤ dπ(2) where dπi =

d(wπi
, {wπ1

, . . . , wπi−1
}) for k ≥ i ≥ 2. Let Wm

′ = {wπ(1), . . . , wπ(m)}. Then, we have OPTm ≥ V ol(Wm
′) =∏m

i=2 dπi
≥ (
∏k
i=2 dπi

)(m−1)/(k−1) = (OPTk)(m−1)/(k−1).

Lemma 3.17. Suppose OPTk ≤ 2(k−1)m logm/(m−k). Then, the greedy algorithm chooses at least m vectors

whose volume is at least OPTk.

Proof. We are seeking a condition for OPTk which will provide a lower bound for m such that OPTm/m! ≥

OPTk. If this holds, then V ol(Greedym) ≥ Optm/m! ≥ OPTk and so Greedy can choose at least m vectors

which have volume at least OPTk. It suffices to find such an m satisfying (OPTk)(m−1)/(k−1)/m! ≥ OPTk

by Lemma 3.16. This amounts to 1/m! ≥ (OPTk)1−(m−1)/(k−1). Since 1/m! ≥ 1/mm for m ≥ 1, we

require 1/mm ≥ (OPTk)1−(m−1)/(k−1). Taking logarithms of both sides and rearranging, we have −(k −

1)m logm/(k −m) ≥ logOPTk. Taking exponents of both sides yields 2(k−1)m logm/(m−k) ≥ OPTk.

In order to interpret this result, we will need to restrict OPTk. Otherwise, for example if OPTk = 1,

the greedy algorithm may never get more than 1 vector to guarantee a volume of at least OPTk since it

might be possible to misguess the first vector. In essence, the number of vectors chosen by the algorithm

depends on OPTk. First, we discuss what is a reasonable condition on OPTk. Consider n vectors in m

dimensions which defines a point in Rm×n. The set of points in which any two vectors are orthogonal has

measure 0. Thus, define 2−α = maxij d(vi, vj). Then, it is reasonable to assume that α > 0, in which case

OPTk ≤ 2−αk = 2−Ω(k). Hence, we provide the following theorem which follows from the last lemma under

the reasonable assumption that the optimal volume decreases by at least a constant factor with the addition

of one more vector.

Theorem 3.18. If OPTk ≤ 2−Ω(k), then the greedy algorithm chooses Ω(k/ log k) vectors having volume at

least OPTk.

Proof. For some α, OPTk ≤ 2−αk. Thus, we solve for m such that 2−αk ≤ 2(k−1)m logm/(m−k). Suitable

rearrangements yield

m ≤ αk(k −m)

(k − 1) logm
≤ 2αk

logm

.

For m, the largest integer such that m ≤ 2αk/ logm, we have

m ≈ 2αk

log(2αk/ logm)
=

2αk

log(2αk)− log logm
= Ω

(
k

log k

)
.

In reality, for a random selection of n vectors in m dimensions, α will depend on n and so the result is

not as strong as it appears.
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4. Discussion

Our analysis of the approximation ratio relies on finding the approximation factor at each round of

Greedy. Indeed, we have found examples for which the volume of the vectors chosen by Greedy falls behind

the optimal volume by as large a factor as 1/k, making Lemma 3.10 tight. But it might be possible to

improve the analysis by correlating the ‘gains’ of the algorithm between different steps. Hence, one of the

immediate questions is that whether one can close the gap between the approximation ratio and the lower

bound for Greedy. We conjecture that the approximation ratio is 1/2k−1.

We list other open problems as follows:

• Do there exist efficient non-greedy algorithms with better guarantees for MAX-VOL?

• There is a huge gap between the approximation ratio of the algorithm we have analyzed and the

inapproximability result. Can this gap be closed on the inapproximability side by using more advanced

techniques?

• Volume seems to play an important role in constructing a low-rank approximation to a matrix. Can

the result of [5] be extended to yield a direct relationship between low-rank approximations and large

volume m × k sub-matrices of a matrix? Or, can we establish a result stating that there must exist

a large volume k × k sub-matrix of a large volume m × k sub-matrix such that one can find an

approximation to the maximum volume k× k sub-matrix by running the same algorithm again on the

m× k sub-matrix? Solutions proposed for low-rank approximations thus far consider only randomized

algorithms. Can this work be extended to find a deterministic algorithm for matrix reconstruction?

Establishing the relationship between the maximum k × k sub-matrix and some k × k sub-matrix of

a maximum volume m× k sub-matrix would give a deterministic algorithm for matrix reconstruction

with provable guarantees.

We would like to note that the approximation ratio of Greedy algorithm is considerably small because of

the ‘multiplicative’ nature of the problem. Another important problem which resembles MAX-VOL in terms

of behavior (but not necessarily in nature) is the Shortest Vector Problem (SVP), which is not known to

have a polynomial factor approximation algorithm. Indeed, the most common algorithm which works well

in practice has a 2O(n) approximation ratio [19] and non-trivial hardness results for this problem are difficult

to find.
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